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We demonstrate that, starting with a simple fermion wave function, the steady mixed state of the
evolution of a class of Lindbladians, and the ensemble created by strong local measurement of fermion
density without postselection can be mapped to the “Gutzwiller projected” wave functions in the doubled
Hilbert space—the representation of the density matrix through the Choi-Jamiołkowski isomorphism. A
Gutzwiller projection is a broadly used approach of constructing spin liquid states. For example, if one
starts with a gapless free Dirac fermion pure quantum state, the constructed mixed state corresponds to an
algebraic spin liquid in the doubled Hilbert space. We also predict that for some initial fermion wave
function, the mixed state created following the procedure described above is expected to have a
spontaneous “strong-to-weak” U(1) symmetry breaking, which corresponds to the emergence of super-
conductivity in the doubled Hilbert space. We also design the experimental protocol to construct the desired
physics of mixed states.
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Introduction—Quantum spin liquids, a class of highly
nontrivial disordered phase of quantum spins, have been
the subject of an extremely active subfield of condensed
matter physics since their early theoretical proposal [1,2].
Despite great progress made in the field, many open
questions and challenges remain (for a review, please refer
to [3–5]). First of all, the theoretical description of spin
liquids usually involves a strongly coupled gauge theory,
which is a formidable analytical problem except for certain
theoretical limits. Second, though it is certain that spin
liquids do exist in some elegant theoretical models, e.g.,
the Kitaev model [6], numerical simulation of quantum
spin liquid on more realistic models often suffers from sign
problems as the models that potentially realize the spin
liquid usually have geometric frustration. Hence, contro-
versies continue to persist about the existence or nature
of the spin liquids in various important realistic models.
Third, the signal of quantum spin liquid in real correlated
materials may be obscured by the inevitable disorders and
impurities.
Rather than the parent Hamiltonian, one can instead

focus on the spin liquid wave function. One standard
construction of spin liquid wave function is the so-called
Gutzwiller projected state [7–13]:

jSLi ¼
Y
i

P̂ðn̂i;↑ þ n̂i;↓ ¼ 1Þjfi;↑; fi;↓i; ð1Þ

where jfi;↑; fi;↓i is a simple spin-1=2 fermion state, and it
can be often taken as a free fermion state with on average
one fermion per site. The projection P̂ ensures that there is

one and only one fermion per site, which matches the onsite
Hilbert space of a spin-1=2 system.
Though the Gutzwiller projection is broadly used as

a trial mean field wave functions of spin liquids, it is
never exactly realized in condensed matter systems. In this
Letter we demonstrate that the Gutzwiller wave function
can be realized in a completely different setup: it can be
constructed as the steady mixed state of a Lindbladian
evolution, or as the ensemble created by strong measure-
ments of local operators, starting with a simple fermion
wave function. The mixed state density matrix obtained
from both constructions in the doubled Hilbert space
(the Choi-Jamiołkowski representation [14,15]), becomes
exactly a Gutzwiller wave function. Predictions of the
constructed mixed state will be made based on our
theoretical understanding of quantum spin liquids.
We also demonstrate that sometimes the constructed

mixed state density matrix is expected to become a super-
condutor in the doubled Hilbert space, which corresponds
to the “strong-to-weak” spontaneous symmetry breaking,
a subject that has attracted great interests very recently
[16–20]. These theoretical predictions and expectations
can be tested using experimental protocols designed in
Supplemental Material (SM) [21].
Basic formalism—Construction with Lindbladian: We

consider the nonunitary Lindbladian evolution of a density
matrix. Let us assume that the density matrix at t ¼ 0
corresponds to a pure quantum state ρ0 ¼ jΨ0ihΨ0j of
fermions. For simplicity we will start with a noninteracting
spinless fermion wave function jΨ0i, and we assume that
jΨ0i is the ground state of a Hamiltonian H0 on a d-dim
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lattice: H0 ¼
P

hi;ji −tijc
†
i cj þ H:c: We will first assume

that H0 is a gapless free fermion tight-binding model, later
we will discuss interactions in H0.
We consider the situation where the jump operators are

the local fermion density operators Li ¼ ffiffiffi
γ

p
n̂i ¼ ffiffiffi

γ
p

c†i ci.
The nonunitary evolution of a density matrix under a
general Lindbladian reads (we assume that the unitary part
of the evolution is absent)

∂tρðtÞ ¼
X
i

LiρL
†
i −

1

2

�
L†
i Liρþ ρL†

i Li

�
: ð2Þ

Exploring physics of mixed states using the Choi-
Jamiołkowski isomorphism of the density matrix, i.e.,
representing the density matrix as a pure quantum state
in the doubled Hilbert space [14,15], has attracted a great
deal of interest [22–30]. The Choi-Jamiołkowski isomor-
phism maps a density matrix ρ ¼ P

n pnjψnihψnj to a state
jρ⟫ ∼

P
n pnjψn;Lijψn;Ri. In our current case it is also

convenient to take the Choi-Jamiołkowski representation of
the density matrix. The evolution of the Choi state in the
doubled Hilbert space is given by

jρt⟫ ∼ etLjρ0⟫; ð3Þ

where

L ¼
X
i

γ

�
n̂i;Ln̂i;R −

1

2

�
n̂2i;L þ n̂2i;R

��

¼
X
i

−
γ

2

�
n̂i;L − n̂i;R

�
2: ð4Þ

Here, L and R label two copies of fermionic modes in the
doubled Fock space of the Choi-Jamiołkowski isomor-
phism of the density matrix. The initial Choi state jρ0⟫ for
the pure state ρ0 ¼ jΨ0ihΨ0j is the free fermion state with
the parent Hamiltonian

H0 ¼ H0ðci;LÞ þH�
0ðci;RÞ

¼
X
hi;ji

− tijc
†
i;Lcj;L − t�ijc

†
i;Rcj;R þ H:c: ð5Þ

In the limit t → ∞, the steady state jρ∞⟫ satisfies the
constraint n̂i;L − n̂i;R ¼ 0.
To more explicitly reveal the implication of the con-

straint n̂i;L − n̂i;R ¼ 0, let us perform a particle-hole (PH)
transformation on ci;R, and formally relabel the fermions in
the L, R spaces as “↑” and “↓”:

ci;L → fi;↑; ci;R → ηif
†
i;↓;

n̂i;L → n̂i;↑; n̂i;R → 1 − n̂i;↓; ð6Þ
where ηi ¼ �1 can be chosen to depend on the sites i. Then
in the limit t → ∞, the constraint n̂i;L − n̂i;R ¼ 0 becomes

n̂i;↑ þ n̂i;↓ ¼ 1; ð7Þ

which is precisely the Gutzwiller projection. In this case,
the steady Choi state is mapped to a spin wave function in
the standard spin liquid literature:

jρ∞⟫ ¼
Y
i

P̂ðn̂i;↑ þ n̂i;↓ ¼ 1Þjρ0⟫; ð8Þ

where P̂ðn̂i;↑ þ n̂i;↓ ¼ 1Þ is the projector onto the subspace
with single occupation. Since now on every site there is one
and only one fermion fi;α, the projected wave function
jρ∞⟫ lives in an effective spin-1=2Hilbert space, with spin-
1=2 operators Ŝμi ¼ 1

2
f†i;ασ

μ
αβfi;β. Under certain conditions,

for example, (1) the fermions in jΨ0i are at half-filling, i.e.,
there are on average 1=2 fermions per site; and (2) under
particle-hole transformation H�

0 becomes H0 with a certain
choice of ηi, then the parent tight-binding Hamiltonian
of jρ0⟫ in the doubled Hilbert space enjoys a full effective
SU(2) “spin” symmetry. For example, if H0 is a tight-
binding model on a bipartite lattice with nearest neighbor
hopping, then choosing ηi ¼ −1 on one sublattice will
result in a SU(2) symmetric H0 in Eq. (5).
Construction with measurements: When the jump

operators are Hermitian and all commute with each other,
the steady state density matrix also describes the ensemble
of wave functions generated by strong measurements on the
jump operators without postselection. For example, when
we perform strong measurement of local densities n̂i on a
pure fermion quantum state jΨ0i, without postselecting the
measurement outcomes, the density matrix of the ensemble
becomes

ρ ¼
X
n

P̂nρ0P̂n; ð9Þ

where n represents a configuration of fermion numbers n̂i,
and P̂n is a projection operator to the particular configu-
ration. Such an ensemble can be obtained in Fermi gas
microscope with high spatial resolution [31–37].
Through measurements, the system wave function col-

lapses to the eigenstate of local density. Without post-
selection, the final mixed state is a classical mixture of
eigenstates of local density with all eigenvalues, which
becomes a quantum superposition in the doubled space,
except now the fermion density in the left and right spaces
are identified. This classical mixture of density eigen-
states is precisely given by the Gutzwiller projection in the
doubled space.
We also note that construction of spin liquids as the

doubled state of a mixed state was discussed before
[28–30], but to the best of our knowledge, the general
connection to the Gutzwiller wave function, which is a
broadly used construction of spin liquids, has not been
explored.
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Dirac spin liquid—A spin liquid state typically involves
an emergent dynamical gauge field [7–13,38]. When the
emergent gauge symmetry is U(1), and the fermions fi;α
have Dirac nodes at the Fermi level, the low energy action
describing the spin liquid is a QED3 with Dirac fermion
matter fields coupled to a U(1) gauge field [39].
QED3 Dirac spin liquids have attracted great interest

[8,9,12,38,41–45]. The dynamical gauge field Aμ may lead
to confinement and hence destabilize the spin liquid states.
In our construction, to ensure a deconfined phase of the
gauge field, one can start with a state jΨ0i that is the ground
state of N flavors of degenerate fermions ci;I at half-filling,
where I ¼ 1 � � �N. For example, one can start with a state
of the alkaline earth cold atoms, which enjoy a large flavor
symmetry [46]. Then eventually the effective Gutzwiller
projection imposed on the mixed state in the doubled
space is

X
I¼1���N

n̂i;I;↑ þ n̂i;I;↓ ¼ N; ð10Þ

which ensures that jρ⟫ is a wave function of an effective
SUð2NÞ spin system, with self-conjugate representation of
SUð2NÞ on each site.
Assuming the dispersion of jΨ0i has Dirac nodes in the

momentum space with N-fold flavor degeneracy, the spin
liquid that jρ⟫ simulates is described by the following
theory:

S ¼
Z

d2xdτ
XNv

v¼1

X2N
a¼1

ψ̄a;vγμð∂μ − iAμÞψa;v þ
1

4e2
F2
μν:

ð11Þ

Here, v labels the Nv Dirac nodes and valleys in the
momentum space. For example, if jΨ0i is the ground state
of a nearest neighbor tight binding model on the honey-
comb lattice at half-filling, or on the square lattice with π
flux per square, then Nv ¼ 2, i.e., there are two indepen-
dent Dirac cones in the momentum space. It is known that
for large enough N, Eq. (11) describes a stable algebraic
liquid state which is also a ð2þ 1Þd conformal field theory.
We refer to this liquid state in the doubled Hilbert space as
the algebraic Choi-spin liquid.
Predictions for the Choi-spin liquid described above can

be made based on our understanding of the spin liquid.
Let us still start with a SUð2NÞ spin liquid on the square
lattice with π flux, whose low energy physics is described
by QED3 in Eq. (11). The local spin operator Ŝzi ¼P

I¼1���N n̂i;I;↑ − n̂i;I;↓ has a nonzero overlap with the
fermion-bilinear composite field ψ̄Szμzψ , where μz ¼ �1
denotes the two Dirac valleys. ψ̄Szμzψ is an SUð2NÞ Néel
order parameter. Then at long distance the spin correlation
functions is given by

hŜz0Ŝzxi ∼ ð−1Þx 1

jxj2Δ þ � � � : ð12Þ

Note that the sign of the correlation function above
oscillates with the sublattice of x. With sufficiently large
N, the scaling dimension Δ can be computed using the
standard 1=N expansion, and it is smaller than the scaling
dimension of the free Dirac fermion [47]:

Δ ¼ 2 −
32

3NNvπ
2
þO

�
1

N2

�
: ð13Þ

We have conducted a numerical study on the Gutzwiller
projected π-flux state on the square lattice, and we see a
power-law scaling with a considerably smaller scaling
dimension compared with free Dirac fermion (Fig. 1),
qualitatively consistent with the prediction of QED3, and
consistent with previous numerics [48]. If we take Nv ¼ 2
in Eq. (13), the first order 1=N expansion leads to power-
law 2Δ1 ∼ 2.92 and 2Δ2 ∼ 3.46 for N ¼ 1, 2 respectively,
both feature enhanced correlation compared with the free
Dirac fermion (with 2Δ ¼ 4). And N ¼ 2 gives better
agreement with the numerics (Fig. 1), as expected.
The SUð2NÞ spin correlation function above can be used

to make predictions for the following “Renyi-2” correlation
in the current context:

⟪ρjδn̂0;↑δn̂x;↑jρ⟫ ∼ ⟪ρjŜz0Ŝzxjρ⟫

∼trðρ2δn̂0δn̂xÞ ∼ ð−1Þx 1

jxj2Δ : ð14Þ

Here, δn̂ðxÞ ¼ n̂ðxÞ − N=2, and we have used the fact that
δn↑ðxÞ ∼ Ŝzx=2, since n̂↑ðxÞ þ n̂↓ðxÞ is a constant. Since the

FIG. 1. The staggered spin-spin correlation of the projected π-
flux state on the square lattice (24 × 24 torus), which is a Dirac
spin liquid constructed with N ¼ 1 and N ¼ 2 species of
fermions. The power-law exponent is considerably enhanced
compared with the unprojected wave function (dashed line),
consistent with predictions of spin liquid theory. The analytical
calculation based on 1=N expansion is given in Eq. (13); note
that there is another “valley number” Nv in the equation. In our
case Nv ¼ 2.
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Choi state jρ⟫ has a SUð2NÞ symmetry, all the SUð2NÞ
spin correlation function should have the same scaling as
Eq. (14). For example,

tr
�
ρ2ðÔ0ÞIJðÔxÞJI

�
ð15Þ

is expected to decay in the same manner as Eq. (14) for
sufficiently largeN, where ÔI

J ¼ c†I cJ with I ≠ J is a SUðNÞ
operator that operates on the index I ¼ 1 � � �N. Note that Ô
does not change the total number configuration n.
Experimental protocol—The correlation Eq. (14) can be

probed experimentally through the protocol detailed in
SM [21], which we briefly summarize here. Our goal is to
verify whether the prepared experimental system corre-
sponds to a spin liquid in the doubled space. Building on
insights from QED3, the nature of the actual experimental
system can be verified by comparing the “classical-
classical” (CC) and the “quantum-classical” (QC) correla-
tor proposed in Ref. [49]. Compared with other scenarios,
the advantage of our proposal is that we do not require
a precise simulation of the actual interacting experimental
system in the classical computer, which is often intractable.
In our case, it suffices to simulate a noninteracting refer-
ence system. Below is a summary of the key steps in our
proposed protocol, and a detailed discussion is provided in
SM [21]: (1) Prepare state jΨ0i (fermionic atoms in optical
lattice) with parent Hamiltonian H0. H0 has a gapless
spectrum, and can include short-range interactions. (2) In
each experimental run, measure the fermion density on
each site, obtain density configuration nm. (3) Input nm in
the computer, find pnm

¼ hΨ̃0jP̂nm
jΨ̃0i, where jΨ̃0i is the

free fermion state whose parent Hamiltonian is the non-
interacting part of H0. (4) Average pnm

δn0;mδnx;m over all
experimental runs, and the result corresponds to the QC
correlator. (5) Independently compute the CC correlator
using jΨ̃0i. If the CC correlator and QC correlator exhibit
the same power-law scaling, based on our understanding of
QED3, the experimentally prepared jρ⟫ should be a spin
liquid state, and its scaling is captured by the QC and CC
correlators.
SU(2) gauge symmetry and superconductivity—It is well

known in the field of spin liquid that (see, for example,
Ref. [50]), a U(1) projection may actually lead to SU(2)
gauge symmetry. In our context, for a class of free fermion
states jΨ0i with N ¼ 1 whose parent Hamiltonian H0 only
has real hopping tij, the seemingly U(1) gauge projection in
the doubled space

Q
i P̂ðn̂i;↑ þ n̂i;↓ ¼ 1Þwould also lead to

a SU(2) gauge symmetry. For example, the π-flux state with
N ¼ 1 in Fig. 1 actually has SU(2) gauge symmetry.
To expose the explicit SU(2) gauge symmetry, we no

longer need the PH transformation of H�
0ðci;RÞ. Instead, we

just need to (trivially) relabel L → 1, R → 2, then the U(1)
gauge projection n̂i;1 − n̂i;2 ¼ 0 automatically implies a
SU(2) gauge constraint:

c†i;ατ
l
α;βci;β ¼ 0; l ¼ 1; 2; 3: ð16Þ

The reason is that, in the Fock space of ci;1 and ci;2, the only
states that survive the projection are j0; 0ii, and
c†i;1c

†
i;2j0; 0ii, both are singlets under a local SU(2) rotation

on ½ci;1; ci;2�. This SU(2) gauge structure emerges only
when N ¼ 1, i.e., when the original state jΨ0i is a spinless
fermion state.
Motivated by experiments in candidate spin liquid

materials, one of the spin liquid states discussed most is
the “spinon Fermi surface state” [7,51–60]. A “spinon
Fermi surface” state can be naturally produced in our
context when the original state jΨ0i is a spinless fermion
state with a Fermi surface. Note that in our current case, the
Fermi surface state after projection would most naturally
have a SU(2) gauge symmetry as long as H0 is real, rather
than a U(1) gauge symmetry as was often discussed in the
literature of spin liquids.
A ð2þ 1Þd Fermi surface coupled to a dynamical

bosonic field (e.g., a dynamical gauge field) is a challeng-
ing theoretical problem in general, and it has continuously
attracted enormous theoretical interest and efforts [61–72].
In our current case, intuitively, the SU(2) gauge field would
yield an attractive interaction between c1 and c2, and this
attractive interaction may lead to pairing instability, i.e., in
the doubled Hilbert space there could be condensate of the
Cooper pair operator Δ̂ ¼ c1c2. A Cooper pair condensate
leads to the following long-range correlation:

⟪ρ∞jðc1c2Þ0ðc1c2Þ†xjρ∞⟫ ¼ tr
�
c†0ρ∞c0c

†
xρ∞cx

�

⟶
x→∞

const: ð17Þ

Superconductivity of matter fields coupled to a non-
Abelian gauge field is referred to as color superconductivity
(for reviews, see Refs. [73,74]). The superconductivity can
be obtained through an ϵ expansion in theory [75,76], and
an extrapolation to ϵ ¼ 1. An experimental realization of
the state in the quantum simulator can serve as a test for this
theoretical prediction.
We have also numerically studied the projected Fermi

surface state with two flavors of fermions, and indeed we
observe a long range correlation of Cooper pairs (Fig. 2),
consistent with our theoretical prediction.
In the doubled space, a Cooper pair condensate sponta-

neously breaks the charge Uð1Þe symmetry, which is also
the so-called “strong” U(1) symmetry of the density matrix
[77,78]. The operator c†xρcx transforms nontrivially under
the strong U(1) symmetry, but invariant under the “weak”
U(1) symmetry. Hence, the long-range correlation of
Eq. (2) implies a “strong-to-weak” spontaneous breaking
(SW SSB) of the U(1) symmetry in the mixed state,
a subject that has attracted enormous interest recently
[16–20]. The SW SSB physically can be viewed as a
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signature of a quantum system becoming more classical,
through interacting with the environment, or measurement.
In the Keldysh formalism, the SW SSB corresponds to the
“locking” of the forward and backward paths through
condensation of a field that couples the two paths; the
condensed field precisely corresponds to the superconduc-
tor order parameter in our case.
Summary and discussion—In this Letter, we demon-

strated that starting with a simple fermion wave function,
the steady state density matrix of the Lindbladian evolution,
or the ensemble generated from strong measurement of
local densities, is a Gutzwiller projected wave function in
the doubled Fock space. The Gutzwiller projection has
been broadly used as a numerical trial wave function of
spin liquid. We propose that this new construction of spin
liquids can be realized in real experimental platforms, e.g.,
the Fermi gas microscope. We also predict that in certain
scenarios, the constructed mixed state has a strong-to-weak
spontaneous U(1) symmetry breaking, which corresponds
to a superconductor in the doubled Fock space. Predictions
made by our understanding of spin liquids, as well as
the detailed measurement protocol of our predictions, are
described in SM [21].
With Hermitian jump operators, the maximally mixed

density matrix is always one of the steady states. For local
dephasing that we considered, local density configurations
are always conserved. This is why the identity matrix is not
the only solution of the steady state, and the true steady
state will depend on the initial state. At time t, the deviation
of the particle number on a given site from the Gutzwiller
projection is approximately expð−γtÞ [Eq. (4)]. Hence, we
need t ≫ 1=γ for the system to be well approximated by the
Gutzwiller wave function. If we turn on perturbations with
strength g in the Lindbladian that do not commute with
local density, their effect will become significant for
t > 1=g. Hence, as long as g ≪ γ, there is a window at

finite time where we can observe the desired physics of spin
liquid.
We have focused on mixed states prepared from initial

gapless states jΨ0i. Gapped fermion states can also be
very interesting—even free fermion insulators can feature
nontrivial topology, e.g., the Chern insulator. The Choi
representation of the Chern insulator in the doubled space is
a quantum spin Hall state, and the procedure proposed in
this work will lead to a Gutzwiller projection of the QSH
state. We leave the generalizations of our work to topo-
logical insulators to a future work.
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