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Effective conformal field theory generated from pure and dephased Chern insulator
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We demonstrate that the fidelity between two states with different Chern numbers Z = tr{pp’} serves as a
generating theory for an effective conformal field theory (CFT) at the (2 + 0)-dimensional temporal interface. p
can be chosen to be a pure trivial insulator, and p’ can be taken as a pure or dephased Chern insulator density
matrix. More specifically, we obtain the following results: (1) Through evaluation of the effective central charge,
stiffness, and correlation function (the “strange correlators”), we demonstrate that the fidelity between a trivial
insulator and an insulator with Chern number C = 1 maps to a CFT with effective central charge c.¢ = 1, while
the fidelity between two Chern insulators with Chern numbers C = 41 maps to a CFT with c.z = 2. (2) The
density matrix of the Chern insulator becomes a quantum spin Hall insulator in the doubled Hilbert space,
and the dephasing acts as an interaction between the two spin species. (3) In the limit of infinite dephasing
the Chern insulator becomes a superconductor in the doubled Hilbert space, featuring the “strong-weak” U(1)
spontaneous symmetry breaking. An analysis based on the Laughlin wave function and previous studies of the
projected wave function of the quantum spin Hall insulator suggest this is a power-law superconductor. (4) With
increasing strength of dephasing, the amplitude of the single-particle strange correlator is suppressed, while the

Cooper pair strange correlator is enhanced, consistent with the trend of emerging superconductivity.

DOI: 10.1103/nn2m-w4vk

I. INTRODUCTION

In recent years, the phases of open quantum systems and
phases of mixed quantum states of matter have attracted
great interest. Like the classification of pure quantum states,
a “phase” should be defined as an equivalence class of
states, characterized by the universal behaviors of the class of
states. In condensed matter physics, a powerful set of tools
for capturing universal physics is the formalism based on
coarse graining, including field theory and the renormaliza-
tion group. Although a complete formalism as such has not
yet been developed for open quantum systems, it has been
realized that in certain scenarios a field theory description of
mixed states of matter is applicable, in particular for states
acted upon by finite-depth quantum channels. For this pur-
pose, the connection to temporal defects in space-time has
proven to be very useful. For example, Ref. [1] showed that
the effects of weak measurements and finite-depth decoher-
ence can be mapped to the physics at temporal defects in
the Euclidean space-time path-integral formalism, which pro-
vides great insights for understanding Luttinger liquids under
weak measurements. Another example of the connection to
the temporal defect is found in Refs. [2,3], which observed
that the bulk topology of a symmetry-protected topological
(SPT) state can manifest at the temporal boundary, especially
through a “strange correlator” [3], i.e., the correlation function
at the temporal interface between the SPT state and a trivial
insulator. These connections have facilitated the understand-
ing of both quantum critical states and SPT states under weak
measurements and decoherence [4-12].

Within all possible open quantum systems, the topological
orders under decoherence are of particular relevance. Quan-
tum information can be stored in topological qubits of a pure
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topological order, and it can be robust against a certain amount
of decoherence. However, strong decoherence can drive a
transition beyond which the coherent information stored
in topological qubits is lost and irretrievable [6-8,13—17].
Among topological orders, the two-dimensional (2D) chi-
ral topological order is of particular interest, as it not only
hosts anyons that store quantum information but also features
an intrinsic 't Hooft anomaly at the system boundary. This
anomaly mandates the presence of gapless modes at the inter-
face between distinct topological states at both the spatial and
temporal interfaces.

For a chiral topological order, the anyons and 't Hooft
anomaly may potentially undergo different changes under
decoherence. The goal of this paper is to investigate chiral
topological orders under dephasing decoherence. In particu-
lar, we would like to diagnose the 't Hooft anomaly of the
chiral topological order in the presence of dephasing. Given a
bulk wave function of chiral topological order, the potential ’t
Hooft anomaly can be diagnosed using the strange correlator
and related quantities, which were explored in many past
works [18-33]. In particular, Ref. [34] pointed out that, when
at least one of the two states is pure, the fidelity between
the two density matrices maps to the partition function of
the conformal field theory (CFT) living at the temporal in-
terface, i.e., slab t = 0, 8, in the Euclidean space-time path
integral, which will be called “fidelity-CFT” hereafter. The
relative Rényi entropy between the two states maps to the
free energy of the fidelity-CFT. If the two states are pure
trivial and Chern insulators, the theoretical expectation is that
the gapless modes at the temporal slab = 0, B constitute a
(2 + 0)-dimensional gapless Dirac fermion, which is a CFT
with central charge ¢ = 1. When the Chern insulator is under
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decoherence, the Kraus operators of the decoherence channel
map to the interactions of the Dirac fermion.

In this work, we consider the fidelity and second relative
Rényi entropy between two states with different Chern num-
bers, for example, a pure trivial insulator density matrix py
and a dephased Chern insulator p¢ with dephasing strength g.
Since the trivial insulator is pure, the fidelity Z and relative
Rényi entropy F take a simplified form:

Z=tr{pups}, F=-InZ. (D)

Since we expect these quantities to map to the partition func-
tion and free energy of the fidelity-CFT, we would like to
extract the quantities of interest for the fidelity-CFT, includ-
ing the effective central charge, phase stiffness, and scaling
dimension of single-particle and composite operators, for dif-
ferent strengths of dephasing.

II. ZERO DEPHASING
A. Effective central charge c.g

Topological insulators in an open environment and out of
equilibrium have attracted great interest [12,35-43]. In this
work we investigate the pure or dephased Chern insulator
using the strange correlator and related quantities, such as
fidelity and relative Rényi entropy. To study a density matrix,
it is often convenient to use the doubled Hilbert space repre-
sentation of the density matrix [44,45]. For example, in the
doubled space the dephased Chern insulator density matrix
maps to a pure state,

108)) = [T e (191) @ [9)),

2 = w{pupt} = {{pu] F)) )

Here |W;) is a Chern insulator state with Chern number
C = +1, and |¥;) is the complex conjugate of |\W;), which
is a Chern insulator with Chern number C = —1. Hence, in
the doubled space a Chern insulator density matrix maps to
a quantum spin Hall insulator. The dephasing acts like an
attractive interaction between the two “spin” flavors, with
of, =2n;, — 1. We would like to extract the quantities of
interest for the effective CFT, including the central charge, the
phase stiffness, and the scaling dimension of single-particle
and Cooper pair operators. For later use, we also define a
rescaled dephasing strength « by cos(a) = e 8/, s0oa = 7 /2
corresponds to the infinite-dephasing limit.

At zero dephasing g = 0, the fidelity and relative Rényi en-
tropy between a trivial insulator and a Chern insulator (labeled
the “trivial-Chern” quantities) with Chern number C = +1
map to the partition function and the free energy of a free
Dirac fermion CFT, with central charge ¢ = 1. The effective
central charge of the fidelity-CFT can, in principle, be ex-
tracted based on the finite-size scaling of the relative Rényi
entropy based on the finite-size scaling of the free energy of a
standard 2D CFT [46]:

F(Ly, Ly
y x

3

Here F (L, Ly) is the relative Rényi entropy defined on a 2D
lattice with rectangular geometry, and L, >> L,.

When both the trivial and Chern insulators possess extra
spatial discrete symmetries such as inversion, the fidelity-CFT
at the temporal interface is unitary. The Hermiticity of the den-
sity matrix demands that the fidelity-CFT be invariant under
Yy — w;, Yr — Iﬂz, and i — —i, where V. g are the left-
and right-moving fermion modes at the temporal interface.
This alone does not ensure a unitary fidelity-CFT, as terms
such as iwzaxl/fL — il/flgawa and 1//28)(1/@ + w;awa are both
allowed in the effective Hamiltonian of the CFT. But if there is
an extra inversion symmetry (x — —x, ¥, <> ¥g), the second
term is excluded, and the fidelity-CFT remains unitary.

Based on these observations, we use the model for a Chern
insulator on a square lattice introduced in Ref. [47]:

H (ky, ky) = sin(k)o™ + sin(ky)o”
+ [y — cos(ky) — cos(ky)]o*. )

The Chern number for the model is C = +1 for 0 < y < 2,
C=—1for—2 <y <0,and C =0 for |y| > 2. The advan-
tage of this model is that it has plenty of discrete symmetries,
which ensures the unitarity of the fidelity-CFT.

To extract the effective central charge c.¢, we compute the
fidelity and relative Rényi entropy with large L, and finite L,.
In the zero-dephasing limit, the fidelity is a simple product in
momentum space:

Z =[] Ithulke) . 5)
k

|k.) and |k) are the Bloch wave functions of the Chern and
trivial insulators, respectively. To avoid singularity in F we
take an antiperiodic boundary condition along at least one of
the two directions. We then plot %]—' versus L2; the intercept

is supposed to be —m e /6.

We first compute the fidelity and relative Rényi entropy
between two states, which are the ground states of H (k)
with y =5/2 and y = 3/2; i.e., it is the fidelity between a
trivial insulator and Chern insulator with C = +1, labeled the
trivial-Chern fidelity. The relative Rényi entropy in this case
is supposed to map to the free energy of a CFT with central
charge ¢ = 1. The intercept of the plot of é—:]—' vs L2 is —0.524
[Fig. 1(a)], consistent with the theoretical expected value of
—m/6 ~ —0.524. We also compute the fidelity and relative
Rényi entropy between two states with parameters y = 1 and
—1, i.e., the “Chern-Chern” fidelity; we obtain an intercept of
—1.06 [Fig. 1(b)], which is also consistent with the theoretical
value of —27 /6 ~ —1.05.

B. Twisted boundary conditions

The (1 4 1)-dimensional free Dirac fermion is dual to a
compact boson with Luttinger parameter K = 1:

K
Sp = /dzx E(a,@)z. (6)

To further confirm the existence of the fidelity-CFT, we can
compare the trivial-Chern relative Rényi entropy with the free
energy of the compact boson. The exact relation between the
fermion and compact boson partition functions requires some
care. More precisely, an exact relation can be made only when
we consider both antiperiodic (A) and periodic (P) boundary
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FIG. 1. (a) We extract the effective central charge c. for the
“trivial-Chern” fidelity CFT. We fix L, = 100 and plot the computed
%]—' vs L2. The intercept is at ~ —0.524, consistent with the theo-
retical value —7 /6 ~ —0.524 (see the zoomed-in plot in the bottom
panel). (b) The effective central charge c.y for the “Chern-Chern”
fidelity-CFT, with Chern numbers +1 and —1. The intercept is at
~ —1.06, also consistent with the theoretical value —27 /6 ~ —1.05.

conditions along both directions of the fermion theory and the
compact boson with twisted sectors in both directions [48].
When we take the antiperiodic boundary condition for both
directions of the fermion, the trivial-Chern fidelity is expected
to map to

Zan =523 + 20 + 25, — 7). )

where 0 and 1 indicate whether there is a Z, twisting of bosons
along the corresponding direction. Here Z, twisting means
we sum over a half-integer rather than an integer number of
windings of the compact boson along that direction. When
we take an antiperiodic boundary along one direction and a
periodic one along the other direction, the relation is

Zap = 5(Z3o + 20 — 25 + Z1). ®)

Relations (7) and (8) are supposed to be valid with an extra
twisting boundary condition 6 too. We compute the fidelity
and relative Rényi entropy of fermion states with a twisted
boundary condition:

Z2(0) = tr{pu(0)p(0)}. C))

pc(0) = [W(O))(¥(O)] is the density matrix of the ground state
of a Chern insulator model with an extra twisted boundary
condition W(x + L) = ne W(x), where n = %1 depends on
whether we take the periodic or antiperiodic boundary con-
dition before twisting. To implement the twisted boundary
condition for the relative Rényi entropy, we replace k, in
Eq. (5) with k; 4+ 60/L and compute F(0). The computed
trivial-Chern relative Rényi entropy Fa,a(0) and the compact
boson partition function with twisted sectors at K = 1 are
plotted in Fig. 2, showing excellent agreement.

We can define the effective stiffness of the fidelity-CFT as
follows:

1 92 _Z0)
200%|,_, Z(0)

The stiffness p; is independent of the system size. In the
doubled space, the density matrix becomes a quantum spin
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FIG. 2. Comparison between the trivial-Chern relative Rényi en-
tropy (data points) and the free energy of the compact boson after
twisted sectors based on Egs. (7) and (8) are considered (solid curves)
as a function of the extra twisted boundary condition 6. The top and
bottom panels are results with the A/A and A /P boundary conditions
atd = 0.

Hall (QSH) insulator, and the stiffness p; corresponds to the
spin stiffness of the QSH insulator, as the two spin flavors of
the state in the doubled space have opposite twisted boundary
conditions. At g = 0 the extracted p; are

Ps,AJA ™ 008, Ps,A/P ™ 0.254. (11)

These values are consistent with the stiffness of the compact
boson theory after summing over different twisted sectors
according to Egs. (7) and (8). They are also consistent with the
stiffness of actual (1 + 1)-dimensional Dirac fermions with
corresponding boundary conditions.

If we consider the Chern-Chern fidelity-CFT between two
states with Chern numbers +1 and —1, the extracted stiffness
is twice the values above for both A/A and A/P boundary
conditions. If we compute relative Rényi entropy between two
states with the same Chern number, the extracted stiffness
vanishes with increasing system size, as the fidelity-CFT will
be trivial.

C. Strange correlators

For a (1 4 1)-dimensional free Dirac fermion CFT, the
single fermion and Cooper pair correlation both decay with
a power law, which leads to the following predictions for the
strange correlators:

Cy,(x) = wfpu ¥ (0)y (¥)pc}/ 2

(o] Y1 @lp) 1
(oulpe) 22
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FIG. 3. The normalized single-particle strange correlator Cy, (X)
in the zero dephasing limit with A /P (green) and A/A (red) boundary
conditions on a 20 x 8 lattice. In a finite system the A/A strange cor-
relator better captures the power-law scaling in the thermodynamic
limit. The difference between the A/A and A/P strange correlators is
due to the difference in the finite minimum momentum k,. But both
decay significantly more slowly compared to the ordinary single-
particle Green’s function (blue). The boundary condition affects the
Green’s function very weakly.

Cip () = trlpe ¥ (0)Y ()oY (0)y ' (x)}/ 2

_ Seul@van vkl L

(el pc)) |28

In the free fermion case, Ay =1/2, and Ay, =1. In
contrast, the ordinary single-particle Green’s function
and the Cooper pair correlation in both p, and p,
should rapidly decay exponentially because both states are
insulators.

The free fermion numerics suggests that the correlators
defined above cross over to the correct scaling dimension
predicted by our field theory with large enough system size,
independent of the boundary condition. For nonzero dephas-
ing, we evaluate the correlators using determinant quantum
Monte Carlo, and thus, we are limited to finite system sizes
and must mitigate the finite-size effects through an appropriate
choice of the boundary condition. The normalized zero-
dephasing single-particle strange correlators with A/P and
A/A boundary conditions on a finite 20 x 8§ lattice are plotted
in Fig. 3, together with the ordinary single-particle Green’s
function of the Chern insulator along the same direction. The
Green’s function is short range, but the strange correlators
are significantly enhanced, as expected theoretically. The A /P
strange correlator is further enhanced compared with A/A
since for a finite system size the A/A strange correlator is lim-
ited by the finite smallest momentum k,. We find that at finite
system size, the A/A strange correlator more clearly features
the power-law behavior that is consistent with the results in the
thermodynamic limit. For the rest of this paper we will always
take the A/A boundary conditions for the calculation of the
strange correlators. Note that the free fermion numerics can
be performed with a much larger system size, and the strange
correlator with the A/A boundary condition does feature the
correct scaling 1/x?2v with Ay = 1/2 for a sufficiently large
system.

II1. INFINITE DEPHASING, g = 400

At infinite dephasing, g = +00, the dephasing acts as a
“Gutzwiller projection” in the doubled space, as was noticed
in recent work [49]. The dephased Chern insulator in the
doubled space becomes a Gutzwiller projected QSH insulator,
ie.,

02°) ~ [ [Prix = ni2)(191) @ [W2)). (13)

1

Field theory argument suggests that a projected QSH
wave function would have long-range superconducting order
[50,51]. But numerics indicates that the state is a power-law
superconductor [50], with an algebraic Cooper pair correla-
tion function, and the scaling dimension of the Cooper pair
operator is 1/2, i.e.,

N 1
o v vyl pZ) ~ 1o (14)
This power-law superconducting order can be understood
using the real-space Laughlin state approximation of the
Chern insulator. When represented as a Laughlin state, the
Chern insulator wave function reads

W, (z) ~ l_[(zi _ Zj)ez,‘*ki\z.

i<j

15)

Then in the form of a Laughlin wave function, leaving the
exponential term implicit, the doubled state of the Chern in-
sulator in the g — oo limit becomes

2
\IJfO(Z,) ~ HP(Z,:WI.)(Z,‘ - Zj)(w?< - w;k) ~ H lzi — z;1°.
i<j i<j

(16)

This is the wave function of a power-law superfluid (super-
conductor). The Cooper pair correlation function of W2°(z;)
can be evaluated with the Coulomb gas approximation, and it
precisely leads to the behavior in Eq. (14) [52].

The ordinary Cooper pair correlation function in the dou-
bled space as a function of dephasing strength is shown
in Fig. 4. The Cooper pair correlation function is strongly
enhanced by increasing dephasing strength. At g — oo, the
decay of correlation depends on the boundary conditions in
our finite system size: The A/A boundary condition leads to a
power-law decay faster than 1/|x|, while the correlation with
the P/P boundary decays slower than 1/|x| at long distances
in the plot. The ordinary correlation function of the doubled
space is actually the Rényi-2 correlator tr{pfococ;pgocxcg}.
The emergence of a long-range correlation of the Rényi-2
correlator implies U(1) strong-weak spontaneous symmetry
breaking, which is a subject that has attracted great interest in
recent years [8,53-56].

The wave function in the limit of g — o0 is just a bosonic
wave function for superfluid. Reference [57] pointed out that
Eq. (16) is the ground state of bosons interacting through a
long-range interaction. Based on this picture, a purely bosonic
ground state wave function can be derived:

(W) ~ / DIg] e/ P55V 6(x)). (17)
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FIG. 4. The ordinary Cooper pair correlation in the doubled
space (the Rényi-2 correlator) as a function of dephasing strength
on a 20 x 8 lattice with periodic (top) and antiperiodic (bottom)
boundary conditions along both directions. The projected Laughlin
wave function suggests a ﬁ power law emerges at g — oco. The
correlations with A/A and P/P boundary conditions decay faster and

1

slower, respectively, than o at long distance in the plot.

The boson (Cooper pair) creation and annihilation operators
can be represented as ¢*'¢, and |¢(x)) is the configurational
basis of ¢(x). The ordinary Cooper pair correlation of [W2°)
is given by

Cep(x) ~ (W2 |70

v
~ / D[] et itre= [ 3z (Vo' ﬁ (18)
X

as expected from the analysis based on the Laughlin wave
function.

In the configurational basis of ¢(x), a bosonic Mott insu-
lator wave function can be written as | D[¢]|¢(x)), which is
an equal-weight superposition of all configurations of ¢(x),
capturing the strong phase fluctuation of the bosonic Mott
insulator. Then the Cooper pair strange correlation function
becomes the path integral

Cop(®) ~ (Wi e Me 9

S - 1
~ [ Dlg i I q19)

v

This is the same scaling as that for the pure trivial-Chern
Cooper pair strange correlator.
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FIG. 5. The single-particle and Cooper pair trivial-Chern strange
correlators for different dephasing strengths measured on a 20 x 8
lattice. The Cooper pair correlation is enhanced with dephasing,
while the single-particle strange correlator is suppressed. These are
consistent with the power-law superconductivity emerging in the
infinite-dephasing limit. The last few data points for the single-
particle strange correlator with @ = 7 /2 are too small to be observed
reliably without more sampling.

The single-particle trivial-Chern strange correlator should
be strongly suppressed in the limit g = oo, as the wave func-
tion in this limit is just a power-law superconductor, with
suppressed fermion excitation.

IV. FINITE DEPHASING

For finite g, the physics should interpolate between the pure
state and the Gutzwiller wave function discussed in the pre-
vious section. As discussed in Ref. [34], the dephasing keeps
the strong U(1) symmetry, meaning within the bosonized field
theory, the strange correlators cannot be short range at finite g.
The scaling dimensions of all strange correlators are expected
to depend only on the same Luttinger parameter of the c.if = 1
fidelity-CFT. The theoretical discussions in the previous sec-
tion indicate that the Cooper pair strange correlator should
have the same scaling dimension in the g =0 and g = oo
limits for the trivial-Chern fidelity-CFT, which suggests that
the scaling dimensions of all strange correlators should at
most weakly depend on g, while the amplitude of the strange
correlators can vary more strongly with g.

The single-particle and Cooper pair strange correlators at
different dephasing strengths are plotted in Fig. 5. The correla-
tion functions with nonzero g are calculated using determinant
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FIG. 6. (a) Single-particle Cj, and (b) Cooper pair C;, strange
correlators as a function of z = x/L, for finite decoherence rate
o = 0.37. The numerical results (red dots) are obtained in a system
of size (L., L,) = (20, 8) with antiperiodic boundary conditions in
both directions. The results agree with the correlation function of
a CFT with Luttinger parameter K = 1, with partition function (7)
(blue curve).

quantum Monte Carlo, and « is the effective coupling to the
Hubbard-Stratanovich field, which is a function of the deco-
herence strength g. Explicitly, cos(a) = e~#/%. As expected,
the single-particle and Cooper pair strange correlators show
opposite trends under dephasing: The Cooper pair strange cor-
relator is enhanced, while the single-particle strange correlator
is suppressed by dephasing. Note that the strange correlator
derived from the pure boson wave function in the infinite-g
limit has the same scaling as the Cooper pair correlation of
a free Dirac fermion and the same scaling as the Cooper pair
strange correlator of the pure Chern insulator. Hence, it is the
amplitudes of the correlators that are suppressed with g, while
the scaling dimensions remain largely unchanged. These ex-
pectations are consistent with the numerical calculation of the
strange correlators in Fig. 5.

We also compare the computed Cooper pair strange corre-
lator with the correlation function in the compact boson CFT
on the torus [58] after combining different twisted sectors as
in Eq. (7). The numerical result is consistent with the CFT
correlation function, as shown in Fig. 6.

In Fig. 7, we find that the stiffness does not strongly de-
pend on g. It has a tendency to slightly increase with g for
a finite system size, but we find this effect becomes smaller
as the system size increases. This suggests that the Luttinger
parameter K of the fidelity-CFT does not strongly depend on g

1.4 1

1.2

1.0{ * > *

ps(a)/ps(0)

0.8 1

0.6 1

T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0
a/(n/2)

FIG. 7. The extracted stiffness of the trivial-Chern fidelity-CFT
as a function of dephasing strength «. The stiffness does not strongly
depend on «, consistent with the theoretical discussions.

either. This result is consistent with the behavior of the strange
correlators, which are in agreement with the predictions of
the K = 1 compact boson CFT for all g, despite the change
in amplitude. This suggests that although dephasing leads to
interaction on the fidelity-CFT and it significantly changes
the ordinary Cooper pair correlation function, it does not
significantly renormalize the Luttinger parameter of the field
theory of the fidelity-CFT. In fact, when g is much smaller
than 1, we can project the density dephasing to the modes
localized at the temporal interface. The zero modes of ¥ and
¥ trapped at the temporal interface are eigenstates of y, with
opposite eigenvalues, and the effective interaction caused by
dephasing does not overlap with the density of zero modes
in the infrared limit. With stronger g, the effective interaction
caused by dephasing can mix the interface modes with the
bulk states, causing more complicated effects.

There is another argument that indicates that the Luttinger
parameter K is not renormalized for all finite g. Let us take
the reference state py as a direct product state which is the
eigenstate of the local density operator, as expected deep in
the trivial insulator phase. The decohered doubled state | o))
can be viewed as the solution of the differential equation
B‘BLE» =), 807,07,|pf). We can plug this form into Eq. (12)
and commute the fermion operators in the correlation function
past the o7, operators to find a simple differential equation for
C&I(i — j). If we further assume translational invariance of py,
then this equation takes the simple form

8,C} (i — J) = —4gC3, (i — ). (20)

which holds for i # j. We can take a power-law ansatz of the
strange correlator Cy, (i — j) = ¢/li — jI?2v and demonstrate
that only the amplitude ¢ will evolve under dephasing strength
g while Ay, remains a constant under g, which implies that the
Luttinger parameter of the effective CFT remains unchanged
under dephasing.

Another question worth asking is whether the power-law
behavior in the ordinary Cooper pair correlation emerges only
at g — oo or at finite critical g.. For 2D quantum states
a transition can, indeed, be driven by finite dephasing, like
the decodability transition of the 2D toric code. As we dis-
cussed, the doubled state in the limit g — oo is a Gutzwiller
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wave function. One potential interpretation of the Gutzwiller
projection is to view its effect as coupling the system to a
dynamical gauge field. The emergent superconductivity is the
condensate of the gauge flux which traps charge 2 through the
quantum spin Hall effect in the doubled space [50] (although
this picture would lead to a true long-range rather than power-
law superconductor). This picture suggests that the emergent
superconductivity occurs only at g — oo, as that is the case
where the gauge constraint is strictly enforced.

V. CONCLUSION AND DISCUSSION

In this work we demonstrated that the fidelity and second
relative Rényi entropy between two states with different Chern
numbers map nicely to a (2 + 0)-dimensional CFT living on
the temporal interface. The dephasing maps to a certain inter-
action of the CFT. In the infinite-dephasing limit, the doubled
state of the dephased Chern insulator becomes a Gutzwiller
projected quantum spin Hall insulator, which is expected to be
a power-law superconductor based on analysis of the Laughlin
form of the wave function. Our numerical results are qualita-
tively compatible with theoretical predictions.

In this work we focused on the effect of density dephasing
on Chern insulators, which is the most physically relevant de-
coherence channel. We found that dephasing does not strongly
renormalize the Luttinger parameter of the field theory of the
fidelity-CFT living on the temporal interface. If the Kraus
operators involve the current operators, dephasing is expected
to more obviously renormalize the Luttinger parameter [34].
We leave this to future numerical study.

We can also consider related problems of a dephased
fractional Chern insulator and, more generally, dephased frac-
tional topological insulators. The fractional Chern insulators
feature rich physics, including both a 't Hooft anomaly and
anyons. These two phenomena may undergo different evolu-
tions under dephasing, leading to a richer phase diagram. We
will also leave this exploration to future work.

The strange correlator was designed as a tool to diag-
nose the anomaly of the system at the temporal boundary,

which arises from the topological effect in the space-time
bulk. Here we briefly discuss its application in diagnosing
topological orders. Let us assume that our target system is
a chiral topological order with a Chern-Simons (CS) the-
ory description. Due to the fractionalization of the physical
fermion, the single-particle strange correlator against a trivial
reference state (which maps to the Green’s function at the
boundary of the system) decays as 1/r¥, where k is the level of
the CS term. Therefore, the single-particle strange correlator
could potentially serve as a rather efficient tool for diagnosing
chiral topological order. For interacting nonchiral topological
order, the behaviors of strange correlators can be complicated
by the Luttinger parameter; therefore, it would take more
effort to fully identify a nonchiral topological order. We leave
a detailed discussion as well as a numerical test to future
study.
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