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Abstract

Ultracold ion traps are powerful tools for probing the dynamics of quantum
many body systems and may potentially be the basis for future quantum com-
puting technology. Rather than numerically solving the Schrodinger equation
to determine the evolution of large quantum mechanical systems, which can
be arduous if not impossible, ultracold ion traps can simulate the evolution
of quantum many-body Hamiltonians so that they do not need to be solved.
In order for this technology to be reliably applied, however, the classical
and quantum dynamics of ions within the trap must be understood by com-
paring experimental results to computational simulation for small (n ≤ 10)
systems. We present two analyses of phenomena in small quantum many-
body systems: first, we clarify the relationship between the transverse-field
Ising model and the XY model for a linear chain of trapped ions; then, we
analyze the dynamics of a structural transition between two conformations
of a two-dimensional Coulomb crystal. In each case, we hope our results
contribute to a more robust understanding of quantum many-body physics
that can be applied to both to ultracold trapped ion simulation and to a
broad spectrum of related phenomena.
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Chapter 1

Introduction

1.1 Overview
In 1964, Richard Feynman, largely considered the most prominent physicist
of the second half of the twentieth century, famously claimed that “nobody
understands quantum mechanics” [1]. While advancements have been made
since then, quantum many body systems are still far too complex to model
using conventional computers. The reason for this is that the dimensions
of quantum many body systems grow exponentially in Hilbert space as the
number of particles increases, while those of classical many body systems
grow linearly. A solution to this problem, also proposed by Feynman, is
quantum simulation: to allow a quantum system to evolve on its own, and to
observe the resulting time-evolved states [2]. A quantum simulator that can
simulate any quantum state is a universal quantum simulator, or a quantum
computer.

Some of the best current realization of quantum simulators use ultracold
trapped ions. In these simulators, ions are spatially confined within the trap
and cooled until they form a regular array known as a Coulomb crystal.
The Coulomb crystal is used to simulate a lattice spin structure, where each
trapped ion corresponds to a particle with a spin. The quantum “spin state”
is encoded into two of the hyperfine energy states of each ion. By illuminating
all the ions with laser radiation, spin-spin and magnetic field interactions can
be simulated via coupling to the phonon modes of the crystal [3]. This allows
for the creation of particular many-body Hamiltonians that can be evolved
in time, after which the internal energy states of the ions may be measured
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to give a final state of the system.
In this thesis, we present two projects based on ultracold trapped ions.

The first is investigation into the relationship between the transverse-field
Ising model and the XY model in a one-dimensional three-layer Paul trap.
These are two different many-body Hamiltonians that can be simulated by
ultracold trapped ions, although the former is much easier to simulate in
a Paul trap than the latter. The relationship between these models has
previously been understood in terms of the rotating-wave approximation,
which leads to a stroboscopic mapping of the TF Ising model onto the XY
model. We compute the time-evolution of small Hamiltonians (up to eleven
ions) in order to determine constraints for experimentalists making use of
this mapping, and we use a perturbative treatment of the transverse-field
Ising model Hamiltonian to explain the mapping more concretely.

The second project is an analysis of the dynamics of a structural transition
between two states of a six-ion Coulomb crystal in a two-dimensional oblate
Paul trap. The ions sit in a two-dimensional anharmonic oscillator potential
and repel each other via the Coulomb force. The two orientations in question
are an open ring, in which all six ions form a ring, and a closed ring, in which
of the five ions form a ring and one ion sits in the center. This transition has
been observed experimentally by Dr. Wes Campbell and his group at UCLA,
with whom we have been collaborating. Using computational modelling and
transition state theory, we have been able to characterize the energy barrier
between these states and estimate both classical and quantum rates of tran-
sition. Using data taken by the Campbell group, we would like to use our
models to determine properties of the experimental transition such as the
actual transition pathway and the effective temperature of the ions. We are
still awaiting the data from the Campbell group necessary to perform these
calculations, however, so I can only present a sketch of how these calculations
would be performed.

Both of these projects concern the dynamics of quantum many-body sys-
tems that can be created and controlled in ultracold trapped ion simulators.
The general scope of our work is to improve the understanding of the clas-
sical and quantum mechanical phenomena that occurs in these simulators
and to provide test cases against which simulator results can be compared.
To this latter point, it is impossible to test large-scale quantum simulators
against numerically-generated results for reasons that I will expand upon in
the next section. Rather, the results from these simulators must be com-
pared to numerical results for small systems to determine their experimental
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limitations. Quantum chemistry calculations, of the sort that are related to
our second project, have historically been used as some of the first test cases
for quantum computers. The results that we present here are part of a body
of work that is used to test the efficacy of current quantum simulators, and
which may eventually be used to test the efficacy of trapped ion quantum
computers.

1.2 Motivation

1.2.1 Quantum Computing
To motivate these inquiries, I will present some background information on
the nature of quantum computing, which is the most well-known potential
application of ultracold ion trap technology. This section will begin with an
introduction to classical computers before addressing quantum computers.

Classical computers operate by using electric circuits to evaluate logic
statements. Logic statements are composed of logic gates, which apply stan-
dard Boolean (true or false) operations. Common examples of logic gates are
the AND gate and the OR gate. In each case, the input(s) are binary bits:
either 0 or 1, or in the case of a circuit, “on” or “off”. An AND gate will
take two binary input signals and output “on” if both signals are “on”, and
“off” in all other cases. An OR gate inputs two binary signals as well, but
its output is “off” if both signals are “off”, and “on” in all other cases.

Complex operations in classical computers are built out of a series of bi-
nary logic gates, and all data used in these operations must be translated
into bits at some point in time. Computer scientists use these structural lim-
itations to determine the time complexity of algorithms, which approximates
the time an algorithm takes to run as a function of the size of the system.
Quantum many body systems fall under the category of “exponential time”,
which is to say that the running time scales as the exponential of the size
of the system. Consider, for example, a system of n particles wherein each
particle has two distinct states (| ↑〉 or | ↓〉). If the system is classical, the
state of the system can be classified at any given time by specifying whether
each particle is in the | ↑〉 state or the | ↓〉 state, which is a 1 × n vector.
If this is a quantum mechanical system, though, each possible superposition
of states (e.g. | ↑↑↑ . . .〉, | ↑↑↓ . . .〉, etc.) may have a non-zero probability
amplitude, so the state of the system must be classified with a 1× 2n vector.
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It is for this reason that, while a quantum mechanical system of 5 or 10
particles can be simulated on classical computers, simulating systems of 200
particles or more is virtually unthinkable (assuming each particle has only
two states, the state vector would have 2200 ≈ 1060 components).

Richard Feynman proposed the idea of a universal quantum simulator, or
a quantum computer, that could simulate any quantum system [2]. In such
a device, the bits of a conventional computer would be replaced by “qubits”,
or quantum bits. These are two-state quantum systems, which means their
state vector is a quantum superposition of | ↑〉 and | ↓〉. This means that
2n variables can be encoded into the state of an n-qubit system (for the
reasons stated above). Furthermore, the set of operations that a quantum
computer could apply is larger than that of a standard computer. If we think
of logic gates as matrices that act on a state vector, the class of logic gates
that a classical computer can apply is encompassed by stochastic matrices,
which preserve the sum of the probabilities of each state. While operations
given by stochastic matrices may be used as quantum logic gates, operations
given by unitary matrices, or matrices that conserve the sum of the squared
probabilitiy amplitudes, may be used as well. This flexibility allows for the
creation of quantum algorithms to solve problems that are unreasonable to
solve in classical computation. Shor’s algorithm and Grover’s algorithm, for
example, drastically improve upon the best classical algorithms for factoring
large numbers and for searching through unordered lists, respectively.

While we may already know what quantum algorithms we would use on
a quantum computer, the hardware has yet to be realized. Qubits must
be physical, quantum mechanical systems that are isolated from thermal
fluctuations and have long decoherence times, and whose interactions can
be finely tuned and quickly adjusted. It is an active field of research to
determine which quantum systems would best satisfy these criteria.

Ultracold trapped ion simulators are among the top candidates for future
quantum computing technology. They are presently used as “analog” quan-
tum computers, in that they can solve quantum many body problems for
specific Hamiltonians. While analog quantum computers lack the flexibility
necessary for quantum computation, the results of trapped ion experiments
will be crucial for future advancements in quantum computer hardware.
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Figure 1.1: A diagram of nitrogen inversion: the dipole moment is antiparallel
to the angular velocity in |1〉 and parallel in |2〉. This image is taken from [5]

1.2.2 Structural Transition
Structural transitions are phase transitions within a crystal from one struc-
tural orientation to another. Strictly speaking, it only makes sense to speak
of structural transitions when dealing with large, statistical systems. In our
second project, we are investigating the reconfiguration of a six-ion Coulomb
crystal. This might be more closely related to conformational changes in
large molecules than to structural transitions in statistical mechanics, but
we have chosen to retain the terminology to clarify that this is a crystal
transition.

A potential analog to this transition is Nitrogen inversion, which occurs in
the Ammonia molecule. Ammonia consists of three Hydrogen atoms and one
Nitrogen atom in a trigonal pyramidal geometry. When rotating about an
axis that is perpendicular to the plane of Hydrogen atoms and that intersects
the Nitrogen atom, the molecule can be in one of two states: that in which
the dipole moment is parallel to angular velocity of the molecule, and that in
which it is antiparallel [5]. In essence, the transition between these two states
amounts to the Nitrogen atom moving from above the plane of Hydrogen
atoms to below it, or vice versa, as is shown in figure 1.1. The necessity for
rotation about the axis of symmetry serves only to exclude that these two
states exhibit mirror symmetry.

Classically, however, the Nitrogen atom ought to be confined to one side
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Figure 1.2: The two conformations of the Coulomb crystal. The open con-
figuration is shown in (a), and the closed configuration is shown in (b).

of the plane of Hydrogen atoms. Classical transitions across potential bound-
aries depend on thermal fluctuations, which have an energy scale on the order
of kBT . By varying the temperature and measuring the probability of tran-
sitioning, experimentalists can determine if a transition is classical in nature.
If the transition probability is temperature-invariant, then we would have
good reason to believe it to be an instance of quantum tunneling (or, in
some cases, an alternative form transition that is not thermally activated).
This is the case with Nitrogen inversion: the Nitrogen atom tunnels across
the sharp potential boundary created by the plane of Hydrogen atoms.

We are analyzing a structural transition in a two-dimensional Coulomb
crystal, which is made up of six ions confined to a plane by an oblate Paul
trap. The two structural states are (1) an open, hexagonal ring of ions and (2)
a closed, pentagonal ring (with one ion in the center), as shown in figure 1.2.
While only the closed-ring state is stable in a spherically-symmetric poten-
tial, the addition of an electric field that perturbs the rotationally-symmetric
potential (what we will refer to as an anisotropic contribution to the trapping
potential) has been shown to create a system in which both states correspond
to stable local minima of the potential. It is in this state that the Campbell
group has observed the structural transitions that we numerically analyze
here.
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Chapter 2

Relationship between the
transverse-field Ising model and
the XY model via the
rotating-wave approximation

PLEASE NOTE: This chapter is a copy of the paper that Professor Fre-
ericks and I published earlier this year.

Abstract
In a large transverse field, there is an energy cost associated with flipping
spins along the axis of the field. This penalty can be employed to relate
the transverse-field Ising model in a large field to the XY model in no field
(when measurements are performed at the right stroboscopic times). We
describe the details for how this relationship works and, in particular, we also
show under what circumstances it fails. We examine wavefunction overlap
between the two models and observables, such as spin-spin Green’s functions.
In general, the mapping is quite robust at short times, but will ultimately
fail if the run time becomes too long. There is also a trade-off between the
length of time one can run a simulation out to and the time jitter of the
stroboscopic measurements that must be balanced when planning to employ
this mapping.
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2.1 Introduction
Recently, there has been significant activity in employing the transverse-field
Ising model within quantum simulators to examine adiabatic state prepara-
tion, excitation spectroscopy, quantum propagation speeds (Lieb-Robinson
bounds) and complicated many-body phenomena like many body localization
and time crystals [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. The transverse-field
Ising model is given by

HTFI =
∑
i<j

Jijσ
x
i σ

x
j −B

∑
i

σzi (2.1)

where σαi is the Pauli spin matrix at site i in spatial direction α. The spin-spin
interactions are given by Jij for the interaction between spins at sites i and j
and will be called the spin-exchange piece of the HamiltonianHSE

TFI , while the
magnetic field strength in the z-direction is given byB (and the magnetic field
piece of the Hamiltonian is denotedHB

TFI). In an adiabatic state preparation,
the system would be initialized in a state polarized along the z-direction
and then the field would be slowly reduced in the presence of the Jij until
the system evolved into the ground state of the Ising model with no field.
If the system is evolved too rapidly, then diabatic excitations will occur,
and their energies can be measured via different spectroscopy techniques.
Lieb-Robinson bounds [18] can be inferred by measuring the propagation
speeds of disturbances to the spin chain, while many body localization and
time crystals require somewhat more sophisticated arrangements that include
quasi disorder added to the system.

There also is an interest in going beyond the simple transverse-field Ising
model to more complex systems. Here, one can imagine going to more com-
plex spin models, like the XY model or the Heisenberg model, or one can
imagine going to higher spin representations, like going to spin one instead
of spin one-half. In this paper, we will focus on employing the rotating-wave
approximation to go from the transverse-field Ising model to the XY model,
which is given by the following Hamiltonian:

HXY = 1
2
∑
i<j

Jij(σxi σxj + σyi σ
y
j ) (2.2)

While it may not seem obvious, there is a rotating-wave approximation ap-
proach which will allow us to map the transverse-field Ising model into the
XY model. We describe this next.
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Define the spin raising and lowering operators via σ± = σx±iσy. Inverting
these relations lets us write σx = (σ++σ−)/2 and σy = (σ+−σ−)/2i. A quick
calculation then shows that σxi σxj +σyi σ

y
j = (σ+

i σ
−
j +σ−i σ

+
j )/2. Thus, the XY

model can be represented in terms of these raising and lowering operators.
To find the relationship between the transverse-field Ising model and the XY
model, we substitute the raising and lowering operators into the transverse-
field Ising model in Eq. (2.1), by replacing σx by (σ+ + σ−)/2 everywhere.
This yields

HTFI = 1
4
∑
i<j

(σ+
i σ

+
j + σ+

i σ
−
j + σ−i σ

+
j︸ ︷︷ ︸

XY piece

+σ−i σ−j )−B
∑
i

σzi . (2.3)

Note how two of the spin-exchange terms are the same as those in the XY
model, but there are two other operators which involve either raising the
spins twice or lowering them twice. If the field B is large, there will be a
large energy cost for those double spin flips, as opposed to having no energy
cost for the XY terms which flip one spin up and the other spin down. This
provides a hint that there should be a relationship between these two models
in a large magnetic field.

To make the mapping more precise, we will invoke the rotating-wave ap-
proximation, which requires us to go to the interaction representation with
respect to the magnetic field piece of the Hamiltonian (or, equivalently, to
the rotating frame). We then transform the spin-exchange part of the Hamil-
tonian via HSE

TFI → exp[iHB
TFIt]HSE

TFI exp[−iHB
TFIt] to give us the interaction

representation of the “perturbation.” In this rotating frame, the magnetic-
field piece of the Hamiltonian is accounted for in the time dependence un-
der the “unperturbed Hamiltonian” H0, so the “interaction piece” of the
transverse-field Ising model becomes

HTFI →
1
4
∑
i<j

(σ+
i σ

+
j e

4iBt + σ+
i σ
−
j + σ−i σ

+
j + σ−i σ

−
j e
−4iBt). (2.4)

When the magnetic field, B, is large, the rotating terms create rapidly oscil-
lating terms in the Hamiltonian which average to zero and can be ignored via
the rotating-wave approximation. So, whenever the rotating-wave approxi-
mation can be applied to the transverse-field Ising model, it should act like
an XY model. To fully understand this mapping, though, we need to explore
in detail how the energy eigenvalues relate as well as the dynamics of the
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wavefunctions. In doing so, we will find the mapping holds stroboscopically
in time because the frame is rotating at the Larmor frequency, and hence the
wavefunctions have an oscillating phase which returns to a multiple of 2π
every Larmor period. We will need to balance the improved accuracy given
from a larger field with the difficulty in properly timing the stroboscopic
measurements when the complex phase factors oscillate too rapidly.

In Sec. II, we derive the formalism we employ for making these compar-
isons. In Sec. III, we present results that illustrate both the success of the
mapping and also show under what circumstances it fails. This is followed
up by conclusions in Sec. IV.

2.2 Formalism

2.2.1 Spin Exchange Coefficients
In an ion trap, the internal ion states of a given atomic species are mapped
onto the spins of a two-state system. A spin-dependent force is applied
to the system, and in the situation where the phonons are only virtually
created, they can be adiabatically eliminated from the system producing an
effective spin-spin interaction. The spin-spin couplings vary with time, but
their average values are given by [19]

Jij = Ω2ωR
N∑
m=1

bi,mbj,m
µ2 − ω2

m

, (2.5)

where Ω is the Rabi frequency, ωR is the atomic recoil frequency, bi,m are
the transverse phonon normal modes of the ion chain (labeled by the mode
index m and the spatial position i), ωm are the corresponding normal mode
frequencies, and µ is the detuning frequency. The normal modes bi,m and
normal-mode frequencies ωm are found from a straightforward classical me-
chanics calculation once the trap parameters are known [20, 21]. The highest
frequency transverse normal mode is the center-of-mass (COM) mode. When
the detuning is larger than the COM mode frequency µ > ωCOM , the spin-
exchange coefficients Jij are well-approximated by a simple power law

Jij ≈
J0

|i− j|α
, (2.6)

where α varies from 0 to 3 depending on the parameters of the Paul trap
and the detuning. All frequencies in this paper that are expressed in units
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of Hz are regular frequencies; the corresponding angular frequencies are 2π
times larger. We use the trapping parameters of a recent experiments [12]:
Ω
√
ωR/ωtrans = 20 kHz, ωtrans = 4.80 MHz, and µ = ωCOM + 60 kHz, where

ωCOM is the transverse center of mass phonon mode of the ion chain and
is equal to ωtrans. We controlled the exchange coefficients by varying the
anisotropy of the trap, that is, the ratio of the longitudinal to the transverse
trapping frequency. We keep ωtrans fixed and vary ωlon from 560− 950 kHz,
which yields an α varying between 0.63 and 1.19 with J0 ≈ 500 Hz.

2.2.2 Time Evolution
Both the transverse-field Ising model and the XY model are time-independent.
The evolution operator is then given by U(t) = exp(−iHt). If U(t) is acting
on a state that is not an energy eigenstate, then it is convenient to diago-
nalize the Hamiltonian in the exponential using V , a unitary matrix whose
rows are the eigenvectors of H, so that

U(t)|Ψ〉 = V †e−iVHV
†tV |Ψ〉. (2.7)

Since we work in the same basis for both the transverse-field Ising model and
the XY model, their respective evolution operators acting on a single initial
state provides a direct comparison between the evolved states.

2.2.3 Energy Levels
Our first illustration of the mapping between these models involves a compar-
ison of their energy levels. The transverse-field Ising model energy levels in
a strong transverse field are approximately Zeeman shifted by −2mB, where
m is the eigenvalue of the Sztot = ∑

i σ
z
i /2 operator. The shift is approximate

because Sztot does not commute with the transverse-field Ising Hamiltonian.
We identify approximate Sztot blocks in the transverse-field Ising energy levels
in the limit of a large transverse field; that is, the energy levels will split based
on the approximate value of Sztot acting on the corresponding eigenstate. Fig-
ure 2.1 shows the extent to which this is possible when B/J0 = 10 in a 6-ion
chain with ωlon = 950 kHz and α ≈ 0.63. The XY Hamiltonian commutes
with the Sztot operator, so we can compare the energy states of both models
on the basis of their Sztot value (approximate for the transverse-field Ising
model and exact for the XY model).
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Figure 2.1: Energy levels of the transverse-field Ising Hamiltonian in a field
of B/J0 = 10 and of the XY Hamiltonian for a chain of 6 ions and a lon-
gitudinal trapping frequency of 950 kHz and α ≈ 0.63. The organization of
the transverse-field Ising levels into approximate Sztot blocks is evident. The
Sztot ≈ 0 Ising levels and the Sztot = 0 XY levels are colored in red.
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For systems with an even number of spin sites, we can directly compare
the Sz = 0 energy levels of the XY model to the Sz ≈ 0 Ising energy levels,
as those levels are not Zeeman shifted to linear order in B.

The Ising energy levels in the limit of a large transverse field can be
treated perturbatively, where the zero-field Ising Hamiltonian perturbs the
transverse-field Hamiltonian. In a simultaneous eigenbasis of the S2

tot and Sztot
operators, the magnetic-field-only Hamiltonian is highly degenerate. Fortu-
nately, the zero-field Ising perturbation completely lifts the degeneracy. We
diagonalize the Sztot blocks of the full transverse-field Ising Hamiltonian, and
then sum over the contribution of other Sztot blocks to calculate the pertur-
bative corrections. The second-order perturbative correction is given by

E(2)
n =

∑
m6=n

〈m|HSE
TFI |n〉〈n|HSE

TFI |m〉
E0
n − E0

m

, (2.8)

where E0
n is the unperturbed energy of the eigenstate |n〉 of HB

TFI . Second-
order corrections to the energies of the Sztot ≈ 0 block are all equal to zero.
This indicates that the energies of the transverse-field Ising Hamiltonian are
even functions of B, as the energies in the denominator are linear in B. The
third-order correction, is then given by

E(3)
n =

∑
m6=n

∑
m′ 6=n

〈n|HSE
TFI |m〉〈m|HSE

TFI |m′〉〈m′|HSE
TFI |n〉

(E0
n − E0

m′)(E0
n − E0

m)

− 〈n|HSE
TFI |n〉

∑
m6=n

〈m|HSE
TFI |n〉〈n|HSE

TFI |m〉
(E0

n − E0
m)2 , (2.9)

and is non-zero, which indicates that the Sztot ≈ 0 Ising levels and Sztot = 0 XY
levels should approach each other as 1/B2. Figure 2.2 shows the calculated
energy differences at various field strengths, as well as a fit from the third-
order perturbative correction, for a 6-ion chain with ωlon = 950 kHz (α ≈
0.63).

For systems with an odd number of lattice sites, we need to shift the
energy scales before comparing energy levels to account for the approximate
Zeeman shift of a spin one-half state. Noting that Sztot commutes with the XY
Hamiltonian, adding a transverse magnetic field to the XY model will result
in Zeeman shifts that are exactly linear in the field strength. We therefore
compare the transverse-field Ising energy levels withHB 6=0

XY = ∑
i<j

Jij
2 (σxi σxj +

σyi σ
y
j ) − B

∑
i σ

z
i when both models have an equal field strength. This com-

parison is shown visually in Fig. 2.3 for a 7-ion chain with ωlon = 650 kHz,
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Figure 2.2: (a) Transverse-field Ising model energy levels for B/J0 = 10
and XY model energy levels for a chain of 6 ions in a longitudinal trapping
frequency of 950 kHz (α ≈ 0.63). Levels in the Sztot ≈ 0 block of the Ising
model and the Sztot = 0 block of the XY model are colored in red. (b)
Difference between the corresponding XY and transverse-field Ising model
energy levels is plotted as a function of field strength for B/J0 = 7, 10, 20,
30, 50, 70, and 100. The particular levels used to measure the difference are
shown in the inset with the arrows.

where the fit in panels (c) and (d) goes as 1/B. Second-order perturbative
corrections to transverse-field Ising blocks with Sztot 6= 0 are nonzero, which
explains why the correction for Sztot 6= 0 blocks no longer go as 1/B2.

2.2.4 Wavefunction Overlap
A numerical evaluation of the modulus squared of the overlap between the XY
and Ising wavefunctions as a function of time is shown in Fig. 2.4 for a 5-ion
chain, ωlon = 950 kHz (α ≈ 0.63), and field strengths of B/J0 = 5, 10, 15, and
20. The initial state for these calculations is the state with all spins oriented
in the −ŷ direction, which is represented in the z-basis as the direct-product
state |Ψ〉 = (| ↑〉 − i| ↓〉)1

⊗(| ↑〉 − i| ↓〉)2
⊗
. . .
⊗(| ↑〉 − i| ↓〉)N . The black

dots are placed at 2πn/ωL, for integer n with ωL = 4πB, which corresponds
multiples of the Larmor period. The red dots are placed according to an
optimized frequency, which is found by modifying the Larmor frequency from
4πB to 4π

√
B2 + (aJ0)2 and varying a until the combined sum of all modulus

squares of the overlaps for a given range of times reaches a local maximum at
integer multiples of the modified period. The form of the correction assumes
that the spin-exchange interaction can be treated as a mean field in the x̂
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Figure 2.3: (a) XY and transverse-field Ising model energy levels for Sztot =
−1

2 in an external field of B/J0 = 10 on a chain of 7 ions with a longitudinal
trapping frequency of 650 kHz (α ≈ 1). The Sztot = 1

2 energy levels are plotted
in panel (b). Panels (c) and (d) plot the field dependence of the difference
between Sztot = −1

2 and Sztot = 1
2 energy levels, respectively. The levels used

to calculate the differences are identified in the inset by the arrows.

direction and that the frequency of the oscillations depends on the resultant
magnitude of the total field. The corrected frequency in Fig. 2.4 corresponds
to a = 1.67, which was determined by optimizing the sum of all plotted
points between tJ0 = 0 and tJ0 = 1. In general, we found that a depends on
the lattice size and on the initial state of the system, so it is not easy to know
what it would be without solving the problem a priori. We went through
this exercise to try to extend the period in time where the two models had
wavefunctions that could be identified with each other stroboscopically. In
general, however, if we don’t have more accurate information available to us,
we simply have to use the Larmor period, which breaks down a bit sooner
than the corrected period.

The squared overlap oscillates between 1 and 0 at the Larmor frequency,
while the envelope of the amplitude decays with time. The importance of
the mean-field correction to the measurement frequency is shown clearly by
the rapid rate of decay of the black dots relative to the red dots. Even for
B/J0 = 20, measurements taken with ωL = 4πB will fall so far out of phase
by tJ0 = 1 that |〈ΦIsing|ΦXY 〉|2 ≈ 0.5, even though the state vectors are
still coming into a maximum alignment of |〈ΨIsing|ΨXY 〉|2 ≈ 0.9 at slightly
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Figure 2.4: Plot of the modulus squared of the overlap of the time-evolved XY
and transverse-field Ising state vectors, 〈ΨIsing(t)|ΨXY (t)〉, for a 5-ion chain
with a longitudinal trapping frequency of 950 kHz (α ≈ 0.63) and various
transverse field strengths. Panels (a)-(d) plot the squared overlap between
tJ0 = 0 and tJ0 = 2 for B/J0 = 5, 10, 15, and 20, respectively. The black
dots are plotted at the Larmor frequency, ωL = 4π. The red dots are plotted
at a numerically-optimized frequency, given by ωopt = 4π

√
B2 + (1.67J0)2.
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different stroboscopic times.

2.2.5 Green’s Function
We define the “pure-wavefunction” retarded spin-spin Green’s function via

GR
α,β,i,j(t, t0) = iθ(t− t0)〈Ψ0|[σαi (t), σβj (t0)]|Ψ0〉 (2.10)

where σαi (t) = U †(t)σαi U(t) is a Pauli matrix in the Heisenberg picture. The
equilibrium Green’s function (which would have a trace over all states rather
than the pure-wavefunction definition above) can be easily shown to be in-
variant to translations in time, so that GReq

α,β,i,j(t, t0) = GReq
α,β,i,j(t+t′, t0+t′). In

the wave function form, this is only the case when |Ψ0〉 is an eigenstate of the
Hamiltonian. Since we cannot choose an initial state which is an eigenstate
of both the XY and transverse-field Ising Hamiltonians, this definition of the
pure-wavefunction retarded Green’s function is not always time-translation
invariant. For transverse field strengths on the order of 10J0 and times on
the order of 1

J0
, however, deviations of this Green’s function from a time

translation invariant one are negligible, so we ignore them. We choose to
compare the GR

x,x,i,j components of the Green’s function because they can be
measured experimentally with Ramsey spectroscopy [22, 23, 24].

In Fig. 2.5, we show the numerical evaluation of theGR
x,x,0,1(t, 0) for a 7-ion

chain in the XY model and the transverse-field Ising model with B/J0 = 5,
10, 15, and 20 and ωlon = 650 kHz (α ≈ 1). The pure state used in the
Green’s function calculation is defined by |ΦT 〉 = ∑

n

√
exp[−βEn]

Z
|n〉, where

Z = ∑
n exp[−βEn] and β = 2

J0
. Note that this wavefunction is not a thermal

state, but it is a linear combination of the eigenstates with the amplitudes of
each state chosen to have the same probability as in a thermal state [25]. Dots
indicate measurements of the transverse-field Ising model Green’s function
at the particular times which correspond to the simulation of the XY model
Green’s function. The red dots correspond to a mean field correction of
0.84J0 (a = 0.84) to the Larmor frequency (as discussed above), which was
determined by optimizing the modulus squared of the overlap between XY
and the transverse-field Ising evolutions of |ΨT 〉 between tJ0 = 0 and tJ0 = 1.

The XY Green’s function initially traces the envelope of the fast-oscillating
Ising Green’s function, but this relationship breaks down at around tJ0 = 0.9.
The dots do not reliably track the XY Green’s function until B/J0 = 15, but
even for B/J0 = 20, the mapping falls off around tJ0 = 1. Further, it
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Figure 2.5: Plot of the pure-wavefunction retarded Green’s function of the
transverse-field Ising Hamiltonian, in blue, and of the XY Hamiltonian, in
green, for a chain of 7 ions in a longitudinal trapping frequency of 650 kHz
(α ≈ 1) and various transverse field strengths. Panels (a)-(d) plot the Green’s
functions between tJ0 = 0 and tJ0 = 2 for B/J0 = 5, 10, 15, and 20,
respectively. The black dots are plotted at the Larmor frequency, ωL = 4π
and the red dots are plotted at a ωopt = 4π

√
B2 + (0.84J0)2.
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is important to note that the gradient of the transverse-field Ising model
Green’s function at measurement times increases with B because the XY
curve does not simply follow its envelope. This means that experimental
error will be amplified considerably in the presence of a large transverse field
due to timing-jitter errors.

2.3 Results
The plots of the Green’s function and of the wavefunction overlap indicate
that there is an experimentally optimal field strength that would produce
the most accurate simulation of the XY model for a given experimental error
in data collection times. This optimal value is important because the slope
of the oscillations of the transverse-field Ising model data at the times where
data is collected can be huge. If we assume that an observable oscillates with
ν ≈ νLarmor = 2B, and that J0 ≈ 400 Hz, then the period of oscillation is
1.25× J0

B
milliseconds. A rough calculation of the optimal field strength can

be made if we maintain that the experimental error in time measurements
must be less than a tenth of the period of the observable. For experimental
error of a microsecond, then, B/J0 ≤ 125, for example.

For fields of equal or lower magnitude than the optimal field strength,
there are also maximum dephasing times, after which the overlap of the
transverse-field Ising model evolved state and the XY evolved state will be
too small to say that the two results are equivalent. Note also that the value
of the overlap will differ depending on whether a simple Larmor frequency
is used or whether a correction factor is included. Table I summarizes this
dephasing time for the modulus squared of the overlap, defining the dephasing
time as the time after which the squared overlap is less than 0.7.

This method of simulating an XY model evolution via the rotating-wave
approximation has been used in an evaluation of Lieb-Robinson bounds for
propagation speeds in systems with long-range correlations [12]. Their exper-
iment used a Paul trap with J0 ≈ 400 Hz and a transverse field of B/J0 =
10. They evaluate a static correlation function, Ci,j(t) = 〈σyi (t)σ

y
j (t)〉 −

〈σyi (t)〉〈σ
y
j (t)〉, between a spin on one end of an 11-site ion chain (i = 0) and

all other spins in the chain. They also plot the evolution of this function
up to tJ0 = 0.3. In Fig. 2.6, we show a numerical evaluation of the same
function for a longitudinal trapping frequency of 560 kHz corresponding to
α ≈ 1.19. Their best fit Lieb-Robinson bound is also overlaid on those plots.
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Figure 2.6: Color map for the spatiotemporal evolution of C0,j(t) on an 11-
ion chain with a longitudinal trapping frequency of 560 kHz (α ≈ 1.19) and
a field strength of B/J0 = 10. Panel (a) plots the evolution of the XY model
correlation function between tJ0 = 0 and tJ0 = 0.3. The white curve is
a power law fit for the light cone of the correlations, reproduced from Ref.
Panels (b) and (c) plot the evolution of the transverse-field Ising model,
but (b) plots only the stroboscopic points with a sampling rate of twice the
Larmor frequency, 2ωL = 8πB. Panel (c) samples the system too frequently,
so it does not produce the XY model accurately.
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Field Strength (B/J0) Larmor Dephasing Time (1/J0) Optimal Dephasing Time (1/J0)
5 0.20 0.28
10 0.35 0.79
15 0.50 1.29
20 0.63 1.79

Table 2.1: Dephasing time of the modulus squared of the overlap of the
evolved XY and transverse-field Ising states, defined as the time at which
|〈ΦXY (t)|ΦIsing(t)〉|2 ≤ 0.7 compared to the strength of the transverse
field. The data used to determine these values is the same as that pre-
sented in Fig. 2.4. The Larmor dephasing time corresponds to the black
dots in Fig. 2.4, which are placed at a frequency of ωL = 4πB, and the
corrected dephasing time corresponds to the red dots, placed at ωopt =
4π
√
B2 + (1.67J0)2.

Panel (a) gives a numerical evolution of the correlation function for the
XY model, while panels (b) and (c) show the transverse-field Ising simulation
of the XY model. Panel (b) measures the transverse-field Ising model at the
twice the Larmor frequency, which corresponds to the values for which this
mapping occurs, while panel (c) measures the Ising model at a frequency eight
times greater than the Larmor frequency (four times more frequent than the
strobiscpic mapping, as detailed below). Note that the transverse-field Ising
model, measured at the appropriate times, provides a good simulation of the
XY model over this short timescale. This is not surprising for a field strength
of B/J0 = 10, given that the coherence time of the modulus squared of the
overlap is 0.35/J0, or about 9 milliseconds for J0 ≈ 400 Hz. The white curve
is the power law fit from the experiment. Note that imprecise timing would
result in both a qualitatively different color map and an incorrect light cone
measurement because the transverse-field Ising oscillations are nonnegligible
compared to the features of Ci,j(t), even at short timescales.

Note that the frequency used for the mapping of the correlation function
Ci,j(t) is 8πB, which is twice that which is used for the overlap and the
Green’s function. This is because Ci,j(t) is dependent upon the operator
〈σyi (t)σ

y
j (t)〉. When the spins of the ith and jth ions have made one half

rotation in the transverse field, which is oriented in the ẑ direction, 〈σyi (t1)〉 =
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−〈σyi (t0)〉 and 〈σyj (t1)〉 = −〈σyj (t0)〉, so 〈σyi (t1)σyj (t1)〉 = 〈σyi (t0)σyj (t0)〉. Thus,
the mapping frequency for Ci,j(t) is twice that of a quantity that depends on
only one σα.

2.4 Conclusions
We examined the mapping between the transverse-field Ising model in a large
magnetic field to the XY model in zero field via the rotating wave approxi-
mation. We compared the overlap of the wavefunctions for the two models,
the time traces of a pure-state Green’s function, and a static spin-spin corre-
lation function. As the field in the Ising model is made larger, the mapping
becomes more precise, but the oscillation frequency increases, so the mea-
surement become more susceptible to timing jitter. In addition, objects like
Green’s functions map to each other only at the precise stroboscopic times,
not at the envelope of their values, as occurs in other similar mappings. Fi-
nally, if one tries to follow this mapping for too long, it breaks down due
to the imprecise mapping period (caused by a finite B field) and due to
timing jitter in the measurements. Nevertheless, this mapping can be em-
ployed to perform simulations of the more complex XY model for short to
intermediate times and is much simpler than directly simulating the full XY
model. This approach has already been employed in quantum simulations.
We hope our work helps quantify how far one can push this mapping, and
more importantly, shows where it fails.
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Chapter 3

Conformational Transition in
Trapped-Ion Coulomb Crystal

In this chapter, I will present the work done on my second project regarding
the analysis of a structural transition in a trapped-ion Coulomb crystal. The
first two sections of this chapter are Computational Simulation, in which I will
present my methods for modeling the Coulomb crystal and possible transition
pathways, and Data Analysis, in which I will address the methods I used to
interpret experimental data taken by the Campbell group and the results of
that work. Ideally, this chapter would conclude with a section comparing the
results of the two analyses. Unfortunately, however, the trapping parameters
that the Campbell group originally gave to us did not correspond to the
measurements they had taken of the system as it transitions. They are in
the process of sending us matching data and parameters, but they have run
into technical difficulties, so that information will not arrive in time to be
included in this thesis. I have attempted to generate potential surfaces that
correspond to the data we have, using a method that I will discuss in the
first section of this chapter, but they are merely guesses and should not
be assumed to be accurate. The final section of this chapter, Conclusions,
therefore serves as an explanation of what my analysis has shown so far and
what we hope to be able to do when we receive matching data and trapping
parameters.
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3.1 Computational Simulation
We are analyzing a Coulomb crystal generated by Dr. Wes Campbell and
his group at UCLA. Their experimental configuration consists of an oblate
Paul trap that confines six 171Yb+ ions to a two-dimensional plane. The
potential within the plane squeezes the ions radially inward, and the Coulomb
crystal is the geometry that minimizes the potential energy of the system
(balancing the mutual repulsion between ions and the trapping potential).
The Campbell group has also added a term to the potential energy that
breaks the rotational symmetry, which has been shown to create a system
in which both the open and closed ring states correspond to local minima of
the net potential [3].

Using the gradient of the potential energy, we can determine the classical
path that the ions will follow from arbitrary initial arrangements into the
optimized positions. That said, determining a potential barrier that the ions
must overcome to move from one structural state to another is nontrivial
because the potential is defined in twelve-dimensional space (assuming that
the ions can only move within the plane of the trap). Using computational
simulations of the transition, we have been able to define the potential barrier
and determine the thermally-activated rate of transition across it as well as
the probability of quantum tunneling.

3.1.1 Derivation of the Oblate Paul Trap Potential
The derivation of the Oblate Paul trap potential is presented originally in
Yoshimura et al. [3]. I will present a consensed version of this derivation that
differs only in the specific values of the experimental parameters. I will also
discuss the nature of an anisotropic, or “symmetry-breaking,” contribution
to the potential.

A Paul trap consists of two DC end-cap electrodes which sit above and
below a central RF ring. According to Earnshaw’s theorem, a static electric
field cannot create local minima or maxima in free space. This can be un-
derstood intuitively using Gauss’ Law: the divergence of the electric force at
a local minimum should be negative (and at a local maximum it should be
positive), but Gauss’ Law says that ~∇· ~F = 0 in a space without free charges.
Thus, a static electric field can only create saddle points in free space.

The Paul trap, so described, creates such a saddle point at the center of
the RF ring. In order to confine ions in all spatial directions, a time-varying
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voltage is applied to the electrodes such that the saddle point oscillates si-
nusoidally as a function of time. As long as ion micromotion is small and
slow with respect to the frequency of oscillation of the potential, then the
resulting potential may be described by a static pseudopotential. The shape
of this potential has been determined through a Comsol simulation, and can
be written as

Ṽ (x̃1, x̃2, x̃3) = ψ(x̃1, x̃2, x̃3) + qφ(x̃1, x̃2, x̃3)

where ψ = q2V 2
0,RF

mΩ2
RF r

4
0
(x̃2

1 + x̃2
2 + 4x̃2

3) is the RF contribution and φ is the DC
contribution. The latter may be broken up into three terms: the DC voltage
on the RF ring, φr = Vr

r2
0
(x̃2

1 + x̃2
2 − 2x̃2

3), and the DC voltage on the top and

bottom endcaps, φt,b = Vt,b( x̃
2
3
a2 + x̃3

bt,b
− x̃2

1+x̃2
2

c2 + d). The relevant parameters
that we used are the amplitude of the RF voltage, V0,RF = 320 V, the RF
frequency, ΩRF = 2π × 48.484 MHz, the DC voltage on the ring, Vr = 5 V,
the DC voltage on the top endcap, Vt = 4 V, the DC voltage on the bottom
endcap, Vb = 4 V, and the geometric fitting parameters, derived from the
Comsol simulation: a = 524 µm, bt = 761 µm, bb = −761 µm, c = 704 µm,
d = 0.812, and r0 = 512 nm.

The conventional way to write the net potential energy of an oblate Paul
trap is in terms of harmonic oscillator frequencies. For the trap used by the
Campbell group, this is given by

Ṽ = 1
2m[

2∑
i=1

(ω2
ψ,i + ω2

r,i − ω2
b,i − ω2

t,i)x̃2
i + ω2

ψ,3x̃
2
3 − ω2

r,3x̃
2
3+

+ ω2
t,3(x̃3 + a

2bt
)2 + ω2

b,3(x̃3 + a

2b2
b

)] + 1
2

N∑
m6=n

kee
2

r̃m,n
, (3.1)

where

ωψ,1 =
√

2qV0,RF

mΩRF r2
0

= ωψ,2 = ωψ,3
2 ,

ωr,1 =
√

2qVr
mr2

0
= ωr,2 = ωr,3√

2
,
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ωb,1 =
√

2qVb
mc2 = ωb,2 = a

c
ωb,3,

and ωt,i is given by the equation for ωb,i with Vb replaced by Vt. Going
forward, we will express the distance between ions in the trap in terms of a
characteristic length scale, l0 ≡ ( kee2

mω2
ψ,3

)1/3. Normalized distances are given
by x ≡ x̃/l0. We also express all frequencies in terms of ωψ,3. Normalized
frequencies are given by

βi = 1
ωψ,3

√
ω2
ψ,i + ω2

r,i − ω2
b,i − ω2

t,i

for i = 1, 2, βr,3 = ωr,3/ωψ,3, βb,3 = ωb,3/ωψ,3, and βt,3 = ωt,3/ωψ,3. The
potential can then be expressed in dimensionless form as

V = Ṽ

kee2/l0
= 1

2

N∑
n=1

[β2
1x

2
1,n + β2

2x
2,n
2 + x2

3,n − β2
r,3x

2
3,n + β2

t,3(x3,n + xo,t)2+

+ β2
b,3(x3,n + xo,b)2] + 1

2

N∑
m6=n

1
rnm

, (3.2)

where xo,t = a2/(2l0bt) and xo,b = a2/(2l0bb). The gradient of this poten-
tial is given by

∇V =
N∑
m=1

[
2∑
i=1

êi,mβ
2
i xi,m+ê3,m[x3,m−β2

r,3x3,m+β2
t,3(x3,m+xo,t)+β2

b,3(x3,m+xo,b)]+

+
N∑

n6=m

3∑
i=1

êi,m
xi,n − xi,m

r3
nm

]. (3.3)

The ions must all be confined to the ê1− ê2 plane in the oblate Paul trap,
so we are only looking for solutions for which x3,m = x̄3 ∀m ∈ [1, N ]. We also
want the ê3 component of the force on each ion to be zero, so ∇V · ê3,m = 0
∀m ∈ [1, N ]. It is then trivial to solve for x̄3, which is given by

x̄3 =
−β2

t,3xo,t − β2
b,3xo,b

1− β2
r,3 + β2

b,3 + β2
t,3
.
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We can then expand this potential around the equilibrium positions,
found by setting ∇V |eq = 0, which gives us

V = V (0) + 1
2

3∑
i,j=1

N∑
m,n=1

qi,mqj,n
∂2V

∂xi,m∂xj,n
|eq.

Note that the qi,n is the dimensionless displacement in the êi direction
from the equilibrium position of ion n. I will define the dimensionless equi-
librium coordinates as those having a bar over them, such as x̄i,n. The
dimensionless Lagrangian can therefore be written as

L = 1
2ω2

ψ,3

3∑
i=1

N∑
m=1

q̇2
i,m −

1
2

3∑
i,j=1

N∑
m,n=1

qi,mK
ij
mnqj,n, (3.4)

where Kij
mn = ∂2V

∂xi,m∂xj,n
is an element from the effective spring constant

matrices. For (i, j) ∈ [1, 2]|i 6= j, this is given by

Kii
mn =

β
2
i −

∑N
n′ 6=m[ 1

r̄3
n′m
− 3 (x̄i,n′−x̄i,m)2

r̄5
n′m

] if m = n

1
r̄3
nm
− 3 (x̄i,n−x̄i,m)2

r̄5
nm

if m 6= n
(3.5)

Kij
mn = Kji

mn =
3∑N

n′ 6=m
(x̄i,n′−x̄i,m)(x̄j,n′−x̄j,m)

r̄5
n′m

if m = n

−3 (x̄i,n−x̄i,m)(x̄j,n−x̄j,m)
r̄5
nm

if m 6= n
(3.6)

The ê3 direction is completely decoupled from the ê1 − ê2 plane, so the
only non-zero components of Kij

mn in the ê3 direction are given by

K33
mn =

β
2
3 −

∑N
n′ 6=m

1
r̄3
n′m

if m = n

1
r̄3
nm

if m 6= n
(3.7)

where β2
3 ≡ 1 − β2

r,3 + β2
t,3 + β2

b,3. By applying the Euler-Lagrange con-
dition to equation 3.4, and assuming that the eigenvalues satisfy qi,m =
Re(bαi,meiωαt), we can now solve for the normal modes about equilibrium ion
positions:

−bαi,m( ωα
ωφ,3

)2 +
3∑
j=1

N∑
n=1

Kij
mnb

α
i,m. (3.8)
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Anisotropic Contribution

The potential surface of the oblate Paul trap, as it has been described so
far, is rotationally symmetrical. This means that, in an equilibrium config-
uration of ions in this potential, there will exist a zero-frequency rotational
mode. In other words, the equilibrium positions of the ions are infinitely de-
generate because any rotation about the center of the trap will yield another,
equivalent equilibrium configuration.

The introduction of a single symmetry-breaking potential resolves this
problem, resulting in a finite degeneracy of equilibrium ion positions. Fur-
thermore, the Campbell group has found that the introduction of such a
potential can create a potential surface in which there are two stable local
minima. The potential that they use is given by

φaniso = qVc
r2

0
(x2

1 − x2
2), (3.9)

where Vc is the voltage parameter that can be used to control the strength
of this contribution. The associated frequency is ωaniso =

√
2qVc/mr2

0. Fol-
lowing the same procedure used to arrive at equation 3.1, we can see that the
addition of the symmetry-breaking potential to the oblate Paul trap simply
results in a modification to β1 and β2 in equation 3.2:

β1 = 1
ωψ,3

√
ω2
ψ,i + ω2

r,i − ω2
b,i − ω2

t,i + ω2
aniso

β2 = 1
ωψ,3

√
ω2
ψ,i + ω2

r,i − ω2
b,i − ω2

t,i − ω2
aniso

It is worth restating that the addition of a symmetry-breaking potential
results in a finite degeneracy of equilibrium states. There is still a non-zero
degeneracy of equilibrium states after the addition of φaniso based on the axes
of symmetry of the net trapping potential.

3.1.2 Transition State Theory
Classical transition state theory gives a simple formula for the rate at which
particles in a metastable state travel over a potential barrier. This formula
is based on the Arrhenius equation, in which the rate is proportional to the
Arrhenius factor, exp−βEb (note that Eb is the height of the energy barrier).
The constant of proportionality of a particle escaping from a one-dimensional
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well is just equal to the curvature at the bottom of the well, ω0/2π. This
equation can be generalized for application to many-body systems,

Γ = ν∗ exp−βEb,
by defining an average frequency, ν∗, equal to the product of all eigenfre-

quencies of the local minimum divided by the product of all stable eigenfre-
quencies of the maximum energy state:

ν∗ =
∏N
j=1 ν

0
j∏N−1

j=1 ν̄j
.

Note that the maximum energy state along the path between local min-
ima must be a one-dimensional saddle point so that Γ has units of frequency.
Many-body rate theory makes two key assumptions: (1) that the entire sys-
tem remains in thermodynamic equilibrium throughout the transition, and
(2) that particles that have traversed the boundary cannot return [26]. The
second assumption may be reasonable for very low temperatures, given that
the state from which the system transitions is metastable (i.e. that its energy
is higher than that of the other local minimum). The first assumption, how-
ever, is harder to accept. In order to assume that the system remains in an
equilibrium state throughout the transition, we must imagine that the time
it takes the particle to achieve thermal equilibrium within a potential well
is much shorter than the timescale on which it transitions between wells. In
many cases, one or both of these assumptions are unreasonable. For that rea-
son, we present this formula as a first-order approximation of the transition
rate between states.

3.1.3 Minimum Energy Path (MEP)
The minimum energy path is the path from one local minimum of the poten-
tial energy to another such that any point on the path is an energy minimum
in all directions perpendicular to the path at that point [28]. It is therefore
necessary that the maximum energy state along this path be a first-order
saddle point, as that point will be a maximum of the energy along the direc-
tion of the path and a minimum of the energy in all other directions. This
can be thought of as the path taken by a classical particle with zero kinetic
energy (i.e. that has no momentum and no velocity after every step), and it
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corresponds to the lowest possible potential energy barrier between the local
minima.

We want to identify the minimum energy path because it will give us
a definitive lower bound on the energy barrier between states. While it
may be unrealistic to assume that the system actually transitions between
states along the MEP, it is useful insofar as it serves as an ideal case for
a thermally-activated transition. Furthermore, the maximum energy state
along the MEP is a saddle point, and therefore can be used to calculate the
rate of thermally-activated transitions between states according to equation
3.1.2.

Approximating the Energy Barrier

The MEP between two local minima of a twelve-dimensional potential is by
no means obvious. It is therefore efficient and often fruitful to construct
simplified guesses at the MEP in order to learn more about the potential
barrer between local minima. We used three such methods, which I will
present in order of incrasing sophistication.

The simplest method is to imagine a path that minimizes the distance
traveled in twelve-dimensional space. Visually, this amounts to drawing a
straight line between the starting position (in one local minimum) of each
ion and its ending position (in the other local minimum). The choice of
which ion in the starting configuration moves to a given position in the
final configuration is chosen such that the net distance travelled by all ions
is minimized. The path of each ion is broken up into an equal number
of evenly-sized steps, which allows us to construct a trajectory in twelve-
dimensional space. The transition in the plane of the Paul trap is shown
in figure 3.1, as well as the energy of the system at each point along the
trajectory as a function of the total distance travelled by all ions. The energy
barrier generated will overestimate the actual energy barrier, but can be used
as an order-of-magnitude approximation. Furthermore, such a trajectory
may be close to the actual pathway for a quantum transition, for which the
probability of traversing the boundary decays exponentially with distance
traveled.

A more accurate approximation of the energy barrier may be obtained
via the drag method. This consists of dragging one ion from its position
in the first minimum configuration to a position in the second minimum
configuration and allowing all the other ions to “relax” around it after each
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Figure 3.1: The most basic approximation of the transition pathway between
states. The left panel shows the pathway of the six ions in the plane of the
oblate Paul trap. The right panel shows the energy of the system at each
point along the path. The red dots correspond to the hexagonal state and
the blue dots correspond to the pentagonal state.

step. The challenge with implementing this method is that the ion being
dragged must cause the transition between states. Choosing, for example,
an ion in the hexagonal ring and dragging it to a nearby position on the
ring of the pentagonal configuration will not bring the entire system into the
basin of attraction around the pentagonal configuration; more specifically,
such a choice would not cause any of the other ions to move into the center
of the ring. The most simple choice to cause a transition into the pentagonal
state is to drag one of the ions in the hexagonal ring to the origin. We
begin by constructing a linear trajectory with equally-sized steps for the ion
being dragged. After this ion is dragged a single step, it is fixed in that
position and the remaining ions are allowed to relax into a new minimum-
energy configuration around it. This process is repeated until the system
arrives at the second local minimum configuration. For this method to give
practical results, the step size must be small so that the other ions follow
continuous paths. The resulting energy barrier, shown in figure 3.2, is still an
overestimation of the true energy barrier. It is, however, a much more realistic
approximation that can be used for rate calculations of both quantum and
classical transitions.
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Figure 3.2: The result of the drag method approximation of the transition
pathway between states. The left panel shows the pathway of the six ions
in the plane of the oblate Paul trap. The right panel shows the energy of
the system at each point along the path. The red dots correspond to the
hexagonal state and the blue dots correspond to the pentagonal state.

The most sophisticated and accurate approximation of the energy barrier
that we used was obtained via the nudged elastic band (NEB) method. This
method begins with an initial guess at the trajectory between local minima.
This guess may be as simple as that which was obtained by the first method,
but the NEB method was more efficient in our experience when using the drag
method trajectory as the initial guess. For the purposes of this explanation,
I will define an initial trajectory of size n as one that has n− 2 intermediate
states between the local minima, and I will number those states such that 1
refers to the first local minimum and n refers to the second local minimum.
We begin by defining a new potential energy function,

VNEB =
n−1∑
i=2

Vi +
n−1∑
i=1

U spring
i,i+1 , (3.10)

which consists of the sum of the potential energy of each intermediate
state of the trajectory as well as the sum of a set of spring terms. These
latter terms can be thought of the potential energy of a hypothetical spring
that connects each ion with its corresponding position in the next step of
the trajectory. The significance of this term can be understood by thinking
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of the entire trajectory as an elastic band with fixed endpoints that is be-
ing stretched and shaped by the contours of the underlying potential. The
“nudging” of this elastic band consists of removing projections of the poten-
tial gradient that will cause unwanted features in our final trajectory, namely
“slipping” (where the direction of the spring force causes a trajectory to slip
off the MEP into a region of higher energy) and “sliding” (where the gradi-
ent of the first term of VNEB causes the points of the trajectory to bunch up
around the local minima). The resulting potential gradient is given by

∇VNEB =
n−1∑
i=2
{[∇Vi −∇Vi · τ̂i] + [∇U spring

i,i+1 −∇U
spring
i−1,i ] · τ̂i}, (3.11)

where τ̂i is the unit tangent to the path. We estimated this direction
in accordance with reference [27]. The final step in the NEB method is to
minimize the energy of the trajectory with respect to VNEB, making use of
∇VNEB as the jacobian. Nudging the trajectory in this way should give us a
final trajectory that is smooth and has evenly-spaced points. This is borne
out for the majority of the path in figure 3.3, with the exception of the area
surrounding the maximum of the path. We believe this to be due to the
numerical minimization protocol we used, as this was not the case for all
paths calculated using the NEB method.

In general, we found that the energy barrier found via the NEB method
is a very good approximation of the actual energy barrier. In principle,
the NEB trajectory should converge on the minimum energy path, but our
minimization protocol was never powerful enough to realize precise conver-
gence [27].

Arriving at the MEP

Making use of the reliability of the NEB trajectory in approximating the MEP
as well as the fact that the maximum energy state along the MEP must be a
first-order saddle point, we have been able to numerically solve for the MEP.
The first step in this method is to identify the configuration of ions that
corresponds to the maximum energy state along the NEB trajectory. The
simplicity of our model and the fidelity of the NEB method have allowed us to
reliably assume this state to have a single unstable mode. We are therefore
able to find the saddle point of the potential by maximizing the potential
energy along the direction given by the unstable eigenvector and minimizing
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Figure 3.3: The result of the nudged elastic band (NEB) approximation of
the transition pathway between states. The left panel shows the pathway of
the six ions in the plane of the oblate Paul trap. The right panel shows the
energy of the system at each point along the path. The red dots correspond
to the hexagonal state and the blue dots correspond to the pentagonal state.

the potential with respect to all other stable eigenvectors. We perform this
optimization protocol twice in order to ensure that the position is precise.
This is the maximum energy state of the MEP.

From the saddle point, the full MEP can be obtained by a two-part pro-
cess: (1) stepping in the direction opposite the component of the gradient
that is parallel to the unstable eigenvector until the system enters a region in
which there are no unstable eigenvectors, and (2) following Newton’s method
of gradient descent, in which steps of magnitude |∇V (p)|2

∇V (p)·H(p)·∇V (p) are taken in
the direction opposite the gradient of a point p. Note that ∇V (p) and H(p)
refer to the gradient of the potential evaluated at point p and the Hessian
matrix evaluated at point p, respectively. The reason that this method is
divided into two steps is that Newton’s method only converges on a local
minimum when the Hessian matrix is positive definite (i.e. zTHz is positive
for any non-zero vector z that contains only real numbers), so a modified ver-
sion of gradient descent must be used until this condition is achieved. The
resulting path is shown in figures 3.4 and 3.5.
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Figure 3.4: The calculated minimum energy path (MEP) for trapping param-
eters corresponding to M2=9. The left panel shows the calculated minimum
energy path (MEP) between the hexagonal and pentagonal states in the
plane of the oblate Paul trap. The purple dots correspond to the saddle
point, which is also the maxmum energy state along the MEP. The right
panel shows the energy of the system at each point along the path, and the
saddle point energy is given by the horizontal purple line. The red dots corre-
spond to the hexagonal state and the blue dots correspond to the pentagonal
state.
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Figure 3.5: The calculated minimum energy path (MEP) for trapping pa-
rameters corresponding to M2=10. The left panel shows the calculated min-
imum energy path (MEP) between the hexagonal and pentagonal states in
the plane of the oblate Paul trap. The purple dots correspond to the saddle
point, which is also the maxmum energy state along the MEP. The right
panel shows the energy of the system at each point along the path, and the
saddle point energy is given by the horizontal purple line. The red dots corre-
spond to the hexagonal state and the blue dots correspond to the pentagonal
state.
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3.1.4 Results
As we mentioned at the beginning of this chapter, we have not yet received
accurate parameters corresponding to the data presented in the first section.
In order to present the overlap between theoretical and experimental analy-
ses, however, we attempted to generate parameters that roughly correspond
to the data sets. We did this by generating 1000 random initial states for a
given value of Vc and running a minimization protocol on each. From this
data, we were able to calculate the percentage of initial states that would
minimize to the hexagonal state. We then tried to match this to the per-
centage of time that the Campbell group’s system was in the hexagonal state
for each plot (M2=9, M2=10, and M2=11) in figure 3.6. It is worth noting
that our method gave percentages that are indicative of the relative sizes
of the potential basins (the “volume” of 12-dimensional space in which the
system will minimize to one of the local minima) for each state, whereas the
percentage of time spent in each state during the experiment is theoretically
dependent on the relative sizes and depths of the potential basins as well
as the mode of transition across the energy barrier. We have no reason to
draw an equivalence between these two percentages, so we are not presenting
them as results of any serious analysis. The choice to match potentials in this
manner was due to the fact that it did not require us to presume a particular
method of transition across the potential barrier.

The values of the spherically asymmetrical voltage in equation 3.9 for
M2=9, M2=10, and M2=11 are Vc = 0.4929 V, Vc = 0.5763 V, and Vc =
0.6306 V, respectively. These values correspond to percentages of 0.368,
0.513, and 0.993, respectively, in the hexagonal state.

Classical Transition

The calculated MEP for the parameters corresponding to M2=9 is shown in
figure 3.4, and the MEP for parameters corresponding to M2=10 is shown
in figure 3.5. We were unable to construct a minimum energy path for the
parameters corresponding to M2=11 because the analysis described above
led us to a set of parameters in which the pentagonal state is a saddle point.
This appears to be consistent with the third panel of figure 3.6, as the system
never enters into a second stable state.

It is clear from figures 3.4 and 3.5 that a thermally-excited system could
not follow these MEPs exactly. This is because the MEP is the path that
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M2=9 M2=10
EP→H
b [K] 5.46× 10−2 1.08× 10−2

ν∗P→H [kHz] 811 997
ωP→H0 /2π [kHz] 98 229

ΓP→H (T=1 mK) [Hz] 1.51× 10−18 2.03× 102

ΓP→H (T=5 mK) [Hz] 1.45× 10−3 1.15× 105

EH→P
b [K] 9.35× 10−3 4.34× 10−2

ν∗H→P [kHz] 704 2380
ωH→P0 /2π [kHz] 98 108

ΓH→P (T=1 mK) [Hz] 6.13× 101 3.39× 10−13

ΓH→P (T=5 mK) [Hz] 1.08× 105 4.05× 102

Table 3.1: The parameters relevant to equation 3.1.2 and the rates of transi-
tion associated with the minimum energy paths for M2=9 and M2=10. The
energy barrier is given by Eb, the average frequency of the many-body calcu-
lation is given by ν∗, and the rate of transition across the potential boundary
according to the many-body rate calculation is given by Γ(T). The values
of the curvature around the minima on the MEP are given by ω0/2π, which
would be used for a one-dimensional Transition State Theory rate calculation.

a system with zero kinetic energy would take between local minima, so the
path can take sharp and sudden turns that particles with momentum would
be unable to make. We still use these paths for classical rate calculations,
however, because they present the lower bound of the energy barrier.

From equation 3.1.2, we are able to calculate approximate rates at which
the system would transition over the energy barrier for given temperatures.
This data is summarized in table 3.1.4. In addition to the parameters neces-
sary to calculate Γ(T) for a many-body system, we have included values for
ω0/2π for each minimum energy path. This is a measure of the curvature in
the potential wells along the MEP, and it may be used in place of ν∗ in a
one-dimensional TST analysis of the potential surface along the MEP. It is
worth noting that ω0/2π is considerably smaller than ν∗.

The TST rates, Γ(T), exhibit a significant temperature dependence for
temperatures an order of magnitude smaller than the energy barrier. This
results in a large discrepancy between the rates of transition in different direc-
tions. We do not know what are expected values for the rates of transition
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in different directions because equation 3.1.2 assumes all transitions to be
moving in one direction (treating the transition from H → P , for example,
as if it were a transition from H over a potential barrier and into an infinite
potential well), whereas the actual system transitions back and forth between
states. By comparing ΓH→P/ΓP→H to data showing tP/tH , where tP is the
total amount of time spent in the pentagonal state, we can approximate the
temperature of the system.

It is worth noting that this classical analysis only takes thermally-activated
transitions into account. Another collaborator on this project, Dr. Alex
Levine, is working on a numerical model of “noise” in the system. The noise
that he is modeling consists of fluctuations in the amplitude of the volt-
ages in the trap that “kick” the ions around in a way that is described by the
Fokker-Planck equation (i.e. that is akin to Brownian motion). This analysis
also takes into account only classical mechanics, but it is much more accu-
rate than our own because it follows Newton’s laws of motion throughout
the transition, and therefore can account for particle momentum at various
points along the path.

Quantum Tunneling

For a purely classical, thermally-activated transition, the minimum energy
path is the ideal transition pathway. This is because the transition relies
on energetic excitations to overcome the potential energy barrier, and the
probability of transitioning along a path does not decrease as the path length
increases. This is not the case for quantum tunneling.

Quantum tunneling occurs when a wavefunction encounters a region from
which it is classically forbidden (i.e. the potential energy in that region is
greater than the energy of the wavefunction). Consider, as an example, the
solution to the time-independent Schrodinger equation for a free particle of
energy E. The TISE is given by

[− h̄2

2m
d2

dx2 + V (x)]ψ(x) = Eψ(x). (3.12)

Let’s further say that the potential energy, V (x), is zero everywhere ex-
cept for the region −a ≤ x ≤ a, within which it is equal to V0 > E. The free
particle, therefore, is classically forbidden within that region. By shifting
around equation 3.12, we find
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h̄2

2m
d2

dx2ψ(x) = (V (x)− E)ψ(x). (3.13)

In the regions in which V (x) = 0, the right side of equation 3.13 is negative
and ψ(x) will be a complex exponential function. This is simply the solution
to the TISE for a classically-allowed free particle, as the spatial probability
distribution, |ψ(x)|2, is uniform, meaning that the probability of finding the
particle in any location is equal. In the classically-forbidden region, however,
the right side of equation 3.13 is positive, meaning that the solution for ψ(x) is
a real exponential function: ψ(x) = B+ exp(κx)+B− exp(−κx). Noting that,
in principle, the width of the classically-forbidden region can be as long as we
want it to be, and that the probability distribution of the free particle should
not be able to increase infinitely, the correct solution within the classically-
forbidden region must be ψ(x) = B− exp(−κx). The quantum mechanical
solution to a free particle in a classically-forbidden region, then, does not
exclude the possibility that the particle traverses that region. Rather, the
wavefunction may penetrate the barrier, but the probability that it does so
decays exponentially with the width of the barrier.

In order to get a sense as to whether a detailed quantum mechanical
analysis of the Coulomb crystal system would be worthwhile, we performed
the Wentzel-Kramers-Brillouin (WKB) approximation. This is an approxi-
mate plane-wave solution to the Schrodinger equation for a potential, U(x),
that varies slowly in space. In this approximation, the wavefunction may be
written as ψ(x) = A exp(iφ(x)), where φ(x) = xk(x) [29]. We can define
k(x) =

√
2m
h̄2 (E − U(x)) for E > U(x) and k(x) = −i

√
2m
h̄2 (U(x)− E) for

E < U(x). Under these conditions, the solution to equation 3.12 is

i
d2φ

dx2 − (dφ
dx

)2 + (k(x))2 = 0. (3.14)

If we assume k(x) to be slowly-varying, which is an extension of the
fact that U(x) is slowly-varying, then we can assume that φ(x) is slowly-
varying as well. This means that d2φ

dx2 ≈ 0, so (dφ
dx

)2 = (k(x))2 and φ(x) =
±
∫
k(x)dx + C0. This leaves us with our zeroth order WKB approximation

of ψ(x) in a classically-forbidden region:

ψ(x) = exp(−
∫ √

2m(U(x)− E)
h̄2 dx+ C0). (3.15)
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The probability of tunneling through a classically-forbidden boundary
that spans from x = a to x = b is therefore

T = exp(−2
∫ √

2m(U(x)− E)
h̄2 dx). (3.16)

We applied this zeroth-order, one-dimensional approximation to each of
the calculated MEPs and found probabilities of transitioning on the order of
exp(−105). We also applied this approximation to the paths used to approxi-
mate the energy barrier, and we found that they all gave higher probabilities
for quantum tunneling than the MEP. The reason for this is that the prob-
ability of tunneling decays exponentially with distance, and although the
MEP is the lowest-energy transition pathway, it is also the longest (among
those listed here). The probability of tunneling along any of the pathways
presented in this thesis, however, is not greater than exp(−104), so we can
conclude that the Coulomb crystal system is not tunneling between states.

3.2 Data Analysis

3.2.1 Markov Chain
A Markov process is a stochastic (random) process that satisfies the property
p(xn|xn−1, xn−2, . . .) = p(xn|xn−1) [31]. This property, also called the Markov
property, means simply that the probability of any future state of the system
is dependent only on the state that immediately precedes it. The simplest
model of a Markov process is the Markov Chain, wherein there exists a
countable set of potential states of a system and every state has a specified
probability of transitioning to any other state. In our case, there are only
two possible states (a closed ring state and an open ring state), and there are
only two transition probabilities associated with each state: the probability
of transitioning to the other state after a given time step, and the probability
of remaining in the same state after a given time step.

The probability of a particular sequence of states, [x0, x1, x2, . . . , xn], is
given by P (x0)∏n

i=1 P (xi|xi−1), the product of the transition probabilities
that describe the given sequence. We assume the transition probabilities to
be constant in time, so the probability of a given sequence of states does not
depend on the order in which transitions occur. This allows us to determine
the transition probabilities very easily from a set of data. Take, for instance,
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a two state system in which the possible states are A and B. In a data set in
which there are n data points, there are n−1 transitions between data points
(e.g. x1 → x2, x2 → x3, etc.). Each data point indicates whether the system
is in state A or state B at a given time. The probability of transitioning from
state A to state B, then, is simply given by dividing the number of transitions
from A→ B divided by the number of transitions in which the system began
in state A. This latter term is the sum of the number of transitions from
A→ B and the number of transitions from A→ A. This can be summarized
by writing the transition matrix as(

pA→A pA→B
pB→A pB→B

)
=
(

nA→A

nA→A+nA→B

nA→B

nA→A+nA→B
nB→A

nB→A+nB→B

nB→B

nB→A+nB→B

)
, (3.17)

where pA→B is the probability of transitioning from state A to state B,
and nA→B is the number of transitions from A to B in a given set of data.

The Markov chain, however, is a very simplistic representation of the
Coulomb crystal system. The actual system, of course, does not have just
two possible states. That said, we accept this to be a reasonable simplifica-
tion because experimental evidence from the Campbell group indicates that
the system spends the vast majority of its time in the two potential wells,
and that it transitions between wells on a timescale much shorter than the
amount of time it spends in either. This justifies treating the transition as a
discontinuous transition between two states. The second shortcoming of the
Markov chain, though, is that it operates on a discrete timescale, whereas
the actual Coulomb crystal system operates on a continuous timescale. The
fact that the Campbell group measured the system at specific, regular times
discretizes the data such that a Markov chain analysis is possible, but the
transition probabilities that result from such an analysis are dependent on
the time in between measurements.

3.2.2 Continuous Time Markov Chain
A more realistic representation of the Coulomb crystal system is a continu-
ous time Markov chain (CTMC). Like the discrete time Markov chain, the
CTMC operates on a countable state space. The difference, however, is that
transitions can occur at any time in a CTMC rather than at only discrete
points in time. We can define the amount of time that the system spends in
a given state, i, as a random variable called the holding time, Hi [30]. After
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the holding time is complete, the system will transition from state i to state j
with a probability pij. For two-state systems, this probability is always equal
to 1 because a state cannot transition from state i into state i in a CTMC;
rather, it is “held” in state i for the extent of the holding time, after which it
must (by definition) transition into the other state. The Markov property for
a CTMC may be summarized by saying that the probability that the system
is in state j at time s + t given that it was in the state i at time t, for all
times t > 0 and s > 0, is independent of the state of the system before t.

Note that the holding time is a random variable, so we are looking to solve
for properties of the distribution of holding times rather than exact values of
the holding time. As the distribution of holding times must be memoryless
(as is required by the Markov property) and holding times can take the value
of any non-negative real number, holding times must be distributed according
to the exponential distribution. An exponential distribution is defined by a
characteristic rate, λi, such that P (Hi ≤ t) = 1 − exp(−λit) for t > 0.
The rate associated with a given state is constant in time, which is why I
have labelled it ias λi for the state i. The expected value of an exponential
distribution is E(Hi) = 1/λi.

While the data we have from the Campbell group represents measure-
ments made at discrete times, we know that transitions between states of
the Coulomb crystal can occur at any time. We can therefore use the data
we have to approximate the average holding time in each state, from which
we can determine the rate constant of the exponential distribution.

3.2.3 Results
The data sent to us by the Campbell group is presented in figure 3.6. Time
is reported on the x-axes and light intensity is reported on the y-axes. The
Campbell group scatters light off the crystal and collects the scattered pho-
tons in a photomultiplier tube. The state of higher intensity corresponds to
the hexagonal state and the state of lower intensity corresponds to the pen-
tagonal state. The intensity is given in units of kilo-counts (of photons) per
second. The Campbell group also reports values for “M2,” which is a mono-
tonic function of the strength of the symmetry-breaking potential, φaniso.
We do not know the precise relationship between M2 and φaniso, however.
Measurements of the M2=9 system were taken every 0.1 sec for a total of
304 sec, while the measurements of the M2=10 and M2=11 systems were
taken every 0.05 sec for a total of 654 sec and 270 sec, respectively.
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Figure 3.6: Measurements taken by the Campbell group of the intensity of
scattered light (units of kilo-counts per second) over time for three different
values of M2 (monotonically related to φaniso). The higher intensity state
corresponds to the hexagonal state of the Coulomb crystal, and the lower
corresponds to the pentagonal state. The black dotted line is the average
value of the intensity between the two states, and is used to divide the data
into a two-state subspace such that a Markov chain analysis can be applied.
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In order to translate this data into two-state space, I determined an aver-
age value between extrema of the intensity for each plot. These are marked
as black dotted lines on figure 3.6. The average values of the intensity for
M2=9, M2=10, and M2=11 and 8.37, 8.88, and 9.11 kilo-counts per second,
respectively. All values of the intensity that were greater than or equal to
this average value were considered to be in the hexagonal state, and all values
less that value were considered to be in the pentagonal state. The transi-
tion matrices below describe the data from the discrete time Markov chain
analysis:

TM2=9 =
(
pH→H = 0.985 pH→P = 0.015
pP→H = 0.009 pP→P = 0.991

)

TM2=10 =
(

0.998 0.002
0.002 0.998

)

TM2=11 =
(

0.997 0.003
0.367 0.633

)
We can gain insight into the shape of the potential surfaces by comparing

the relative sizes of pH→P and pP→H , which we would expect to be related to
the relative sizes of the rates of transition in a classical, thermally-activated
system. The values of pH→P/pP→H for M2=9, M2=10, and M2=11 are 1.627,
1.047, and 0.009, respectively. This indicates that the rate of transition from
the hexagonal to the pentagonal state is slightly favored for M2=9, whereas
the rates of transition are roughly equivalent for M2=10. As expected, the
M2=11 system transitions much more often from the pentagonal state to the
hexagonal state than vice versa.

If we believe this to be a thermally-activated transition, a larger rate
of transition in one direction should correspond with a lower energy barrier
(i.e. an initial state with a higher energy) or a larger curvature in the initial
potential well. It is therefore worth noting a difference between my guess
at the M2=10 parameters and the results of the discrete time Markov chain
analysis. As shown in figure 3.5, the energy barrier in the H → P transition
is much larger than that of the P → H transition, which meant that the rel-
ative rates of transition differed by multiple orders of magnitude. The data
from the Campbell group, however, shows that the probabilities of transi-
tioning in either direction for M2=10 are nearly identical. This is likely due
to the shortcomings of my method for guessing corresponding parameters,

48



M2=9 M2=10 M2=11
Average Holding Time Pent [sec] 10.583 26.810 0.086
Average Holding Time Hex [sec] 6.388 30.418 13.312

λP [Hz] 0.094 0.037 11.607
λH [Hz] 0.156 0.033 0.075

Table 3.2: The average holding time in the pentagonal and hexagonal states
for each value of M2. The characteristic frequencies, λi, are the inverse of
the average holding times.

as was discussed in the previous section. Another possible reason for this
discrepancy could be the path that the system takes to transition between
states: if the system takes a path with a significanly higher energy barrier
than the one displayed in figure 3.5, the difference between the energies of the
local minima will be smaller compared to the difference between the energy
of either minimum and that of the saddle point. This means that the rates
of transition in both directions will decrease and that pH→P/pP→H should
approach 1. The Campbell group has been unable to take images of the
trapped-ion system during a transition, though, so we do not have enough
information to say whether or not this could be the case.

The discrete time Markov chain analysis, however, does not account for
the actual amount of time that the system spends in either local minimum
before transitioning. This is notable because, as mentioned earlier, the length
of time between measurements for the M2=9 data is twice that of the M2=10
data. While this discrepancy should not affect the relative probabilities of
transitioning, it is an important point of comparison between the different
systems. By measuring the average amount of time that the system spends
in one of the states before transitioning, we can approximate the expected
value of the holding time and the characteristic rate of the distribution. These
values are summarized for each data set in table 3.2.3.

The relative sizes of the characteristic frequencies in each system align
with our expectations based on the transition matrices from the discrete time
Markov chain analysis. The relative lengths of the holding times between dif-
ferent sets of parameters is notable, however, as the M2=10 system displays
significantly longer holding times in both directions than either of the other
two states. The rapid transitions during the last 50 sec of the M2=9 mea-
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surements certainly exaggerate this difference, but it is evident nonetheless
upon inspection of the timescale in figure 3.6. This is unexpected because our
computational analysis of the MEP did not indicate any significant increase
in the overall energy barrier or decrease in curvature in the potential wells.
The result may therefore indicate that the system transitions using a path
other than the MEP.

3.3 Conclusions
Computational models of the potential surface in the oblate Paul trap have
allowed us to examine the energy barrier between the two stable conforma-
tions of the Coulomb crystal. While we are unable to determine the precise
path that the system takes between states, the paths presented in section
one of this chapter give upper and lower limits for the energy barrier be-
tween states. These can be used to determine the rate of thermally-activated
transitions from one well to the other. When we are given the parameters
that correspond with measurements of the Coulomb crystal transition, we
hope to use this analysis as an effective thermometer for the system.

The use of discrete and continuous time Markov chain analyses also allows
us to gain insight into the height of the potential barrier and the curvature
at the bottom of the potential wells along the actual transition pathway.
In conjunction with the the work of Dr. Levine on models for noise in the
trapped ion system, we hope to be able to characterize the path of and the
energetic contributions to this transition.
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Chapter 4

Final Remarks

4.1 Rough Timeline
The work presented in this thesis has been completed over a larger time span
than the usual two semesters, so I would like to clarify at what times the
different aspects of this research were completed.

Chronologically, the first project I completed was that which is presented
in chapter two. I began work on it with Professor Freericks during January
2015, the second semester of my freshman year. I spent the extent of that
semester familiarizing myself with spin dynamics and the XY and transverse-
field Ising models. Over the following Summer, I taught myself how to code in
Python. This effort continued into my sophomore year, during which I wrote
all of the code necessary to evolve the Hamiltonians in Python and began to
frame the problem we were investigating. The following Summer (2016), I
worked with the Awschalom group at the University of Chicago and did not
make significant headway on this project. I then studied abroad during the
Fall 2016 semester at the University of Bologna, where I focused on staying
acquainted with the project rather than making further progress. The Spring
2017 semester was spent re-familiarizing myself with the programs I had
written and beginning to narrow down the material that would be covered
in a paper. I stayed on campus to continue working with Professor Freericks
over the Summer of 2017, and it was during this time period that I completed
the final calculations and began making figures and writing the paper. The
paper-writing process continued into the first two and a half months of the
Fall 2017 semester, after which we spent about two weeks working on referee
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reports. The paper was submitted in November of 2017 and was accepted
for publication in January of 2018.

Work on the second project began in earnest only after the submission of
the paper. The third chapter of this thesis, therefore, is the result of about
a semester of work.
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[14] Martin Gärttner, Justin G. Bohnet, Arghavan Safavi-Naini, Michael L.
Wall, John J. Bollinger and Ana Maria Rey, Nature Physics 13, 781
(2017).

[15] J. Zhang, P.W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G.
Pagano, I.-D. Potirniche, A.C. Potter, A. Vishwanath, N.Y. Yao, C.
Monroe, Nature 543, 217 (2017).

[16] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P. Hauke, M.
Heyl, D. A. Huse, and C. Monroe, Nature Physics 12, 907 (2016).

[17] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. B.
Kaplan, A. V. Gorshkov, Z.-X. Gong, and C. Monroe, preprint arXiv
1708.01044 (2017).

[18] E. Lieb and D. Robinson, Commun. Math. Phys. 28, 251 (1972).

[19] S.-L. Zhu, C. Monroe, and L.-M. Duan, Phys. Rev. Lett. 97, 050505
(2006).

[20] D. F. V. James, Appl. Phys. B 66, 181 (1998).

[21] C. Marquet, F. Schmidt-Kaler, and D. F. V. James, Appl. Phys. B 76,
199 (2003).

[22] ] M. Knap, A. Kantian, T. Giamarchi, I. Bloch, M. D. Lukin, and E.
Demler, Phys. Rev. Lett. 111, 147205 (2013).

[23] M. Serbyn, M. Knap, S. Gopalakrishnan, Z. Papić, N.âĂĽY. Yao,
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