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Electrons can organize themselves into charge-ordered states to minimize the effects of long-ranged Coulomb
interactions. In the presence of a lattice, commensurability constraints lead to the emergence of incompressible
Wigner-Mott insulators at various rational electron fillings, v = p/g. The mechanism for quantum fluctuation-
mediated melting of the Mott insulators with increasing electron kinetic energy remains an outstanding problem.
Here, using matrix product state techniques, we analyze the bandwidth-tuned transition out of the Wigner-Mott
insulator at v = 1/5 in an extended Hubbard model on infinite cylinders of varying circumference. For the two-
leg ladder, the transition from the Mott insulator to the Luttinger liquid proceeds via a distinct intermediate phase
with gapless Cooper pairs and gapped electronic excitations. The resulting Luther-Emery liquid is the analog
of a strongly fluctuating superconductor. We place these results in the context of a low-energy bosonization
based theory for the transition. On the five-leg cylinder, we provide numerical evidence for a direct continuous
transition between the Wigner-Mott insulator and a metallic phase across which the spin and charge gaps vanish
simultaneously. We comment on the connections to ongoing experiments in dual-gated bilayer moiré transition

metal dichalcogenide materials.

DOI: 10.1103/PhysRevB.110.L.241112

Introduction. The emergence of Wigner-Mott insulators at
a partial commensurate filling of electronic bands is one of the
hallmarks of an interaction-induced phenomenon [1]. Despite
being an old problem, much remains to be understood about
how a Wigner-Mott (WM) insulator emerges from a Landau-
Fermi liquid (FL) at a fixed electronic filling (v) as a function
of increasing strength of interactions. The FL metal hosts an
electronic Fermi surface whose area is fixed by Luttinger’s
theorem [2,3]. On the other hand, the WM insulator does not
host any electronic Fermi surface and spontaneously breaks
space-group (and possibly spin-rotation) symmetries. Given
these differences, one might expect that the most common
scenario would be for the metal-insulator transition to be first
order in nature, which is seen in many solid-state materials
[4]. An alternative “weak-coupling” perspective suggests that
the transition can proceed via intermediate metallic phases
with broken translational symmetry and an even number of
electrons in the enlarged unit cell. Examples of both classes
of transitions, including the additional effects of disorder, have
been analyzed in a large body of earlier work [5—8]. The most
intriguing scenario involves a direct continuous transition be-
tween a symmetry-preserving FL metal and a WM insulator.
As a matter of principle, such continuous transitions can be
described using quantum field theoretic methods involving
fractionalized degrees of freedom and emergent gauge fields
[9,10], but they typically rely on artificial limits to make
computational progress.

In this Letter, we study the transition(s) between a
WM insulator and a FL metal at a fixed filling v =1/5
for spinful electrons on the triangular lattice using infi-
nite matrix product state (MPS) techniques [11,12]. In the
strong-coupling regime, superexchange leads to a spin-singlet
Mott-insulating ground state with finite spin and charge
gaps, Ay, A, respectively; see Fig. 1. Starting with the fully
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gapped Mott insulator, which can be efficiently represented
using MPS, we address the quantum fluctuation-induced
melting with increasing single-electron bandwidth. In par-
ticular, are there intermediate gapless phases distinct from a
symmetry-preserving FL metal [Fig. 1(a)], or is there a direct
transition to the FL across which Ag, A, vanish simultane-
ously [Fig. 1(b)]?

With increasing quantum fluctuations, the spin singlets in
the Wigner-Mott insulator can melt into delocalized, strongly
fluctuating Cooper pairs before breaking apart to reveal the
electronic excitations. For a particular set of microscopic in-
teraction parameters, we find compelling evidence for this
two-step transition on two-leg ladders where the intervening
Luther-Emery liquid [13,14] hosts a gap to single-electron
excitations, but not to the spin-singlet Cooper pairs. We em-
phasize that this is a “strong-coupling” route to engineering
superconductivity in a model with purely repulsive interac-
tions, without the need for any microscopic attraction. This
curious result derives from the Wigner-Mott state, which
can be understood as a crystal of localized Cooper pairs
[see Fig. 1(c)]. The recent report of superconductivity in
twisted WSe, obtained by melting a correlated insulator [15]
at v =1 is an interesting experimental example of similar
phenomenology; see also Ref. [16]. Notably, the conditions
under which these pairing correlations emerge (at low den-
sity and with long-range interactions) are markedly distinct
from prior reports of pairing correlations at weak coupling
[17,18] or at unit filling [19-21] in two-leg ladders, and they
differ from recent theoretical predictions under comparable
conditions [22].

On the five-leg cylinder and for a similar choice of pa-
rameters, we find evidence for a direct continuous transition
between the Wigner-Mott insulator with broken translational
symmetry and a gapless metallic phase. Such a transition is
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FIG. 1. Schematic for two possible scenarios for continuous
bandwidth-tuned Mott transitions at v = 1/5, where A, A, vanish at
(a) two separate QCPs, with an intermediate gapless phase, or (b) the
same QCP but with distinct critical exponents. (c) The two quasi-2D
infinite cylinder geometries, XC2 and YCS, along with the respective
Mott insulators (r/U < 1) and the electronic Fermi surface in the
metallic phase (r/U > 1). The blue ovals denote singlet bonds and
the orange lines denote cuts through the electronic Fermi surface,
corresponding to the allowed momentum modes around the cylinder
circumference.

seemingly at odds with any Landau-Ginzburg-Wilson-based
paradigm for continuous quantum phase transitions, as there
is no a priori reason for the spin and charge orders to vanish
and the electronic Fermi surface to appear simultaneously.
This result is corroborated in part by a nontrivial scaling
collapse associated with the extracted spin and charge “gaps,”
respectively.

Experimental motivation. Bilayers of transition metal
dichalcogenides (TMDs) realize an effective moiré triangular
lattice, and have been used to study a bandwidth-tuned con-
tinuous metal-Mott insulator transition at v = 1/2 [23,24]. In
parallel, a number of experiments using moiré TMDs have
reported evidence for a plethora of Wigner-Mott insulators
at electron fillings v = 1/6, 1/5, 1/4, etc., induced by the
screened long-range Coulomb interactions [25-27]. Wigner
crystals in the absence of a moiré potential have been re-
ported across different platforms in earlier work [28-32].
While the nature of the electron spin configuration, and its
possible ordering, is presently unclear for all of these WM
insulators, the charge order for v = 1/6 has been imaged
directly [33]. The competing spin-exchange interactions are
highly frustrated and the ordering (or lack thereof) is a delicate
question [34-36]. In the context of moiré systems, previous
theoretical effort has focused on the crystalline regime deep
in the Mott insulator [37,38]; Hartree-Fock [39-41], classical
Monte Carlo [42], and density matrix renormalization group
(DMRG)-based [43] methods have also been used to study
the competition between spin and charge orderings over a
range of coupling strength and density. Momentum-space-
based exact diagonalization methods have also been employed
to study the metal-insulator transition for a host of other fill-
ings [44,45]. The Mott insulator' at v = 1/5 provides a useful
starting point to study the onset of electron delocalization and

The same filling is denoted v. = 2/5 in Ref. [25], measured rela-
tive to the full filling of the band (v, = 2).

melting of the spin gap, going beyond any Hartree-Fock or
classical Monte Carlo based approach.

Model and method. We study the ground state phase dia-
gram of the extended Hubbard model on the triangular lattice,
given by

H = Hyn + Hiy, (la)
Hiin = ~t Z (chyCry +HC) =) e (1D)
r

Hmt:Uann,ﬁ Y Ve (0
r;ﬁr

Here, the electron creation and annihilation operators at
site r with spin o are denoted c]_, ¢,y, respectively. The
on-site interaction U and further neighbor interactions V (r)
are kept fixed, with the latter determined by the screened
Coulomb interaction in bilayer TMD experiments [23-25].
For our calculations, we truncate V(r) at fourth-nearest-
neighbor interactions on the triangular lattice with V,/V| ~
0.512, V3/V; = 0.423, and V4/V; = 0.284, where V, is the
nth nearest-neighbor interaction strength [46]. We choose
Vi/U = 0.5. The single-electron hopping is 7, and the chemi-
cal potential u couples to the total electron density with n, =
>, ¢l ¢,y In the remainder of this Letter, we focus on the
electron filling fraction v = 1/5 and in the zero-magnetization
sector. The phase diagram is then studied by varying ¢ at fixed
filling and interaction.

We make use of infinite matrix product state (iMPS) tech-
niques on two quasi-two-dimensional (2D) geometries: the
two-leg ladder (XC2) and the five-leg cylinder (YCS5). The ge-
ometries are shown schematically in Fig. 1(c). We numerically
determine variational ground states as a function of the iMPS
bond dimension x [47,48]. Wherever possible, we extrapolate
our results in the limit x — oco. See Supplemental Material
[46] for further details.

Two-leg ladders. We perform calculations with the XC2
geometry for two different choices of the hopping parameters.
We denote the hopping amplitude along the long direction ¢
and the amplitude along the short direction ¢’ (see Fig. 1). For
(i) t = ¢/, the band structure leads to two Fermi points (FPs),
as in Fig. 2(a), while for (ii) ¢’ = 6r there are four FPs as in
Fig. 2(f). Let us denote the metallic phase in the corresponding
bosonized model as CaSB, where o (8) denote the number
of charge (spin) modes, respectively. For both cases, we find
a Mott insulator on the two-leg ladder for U/t >> 1 and a
metallic Luttinger liquid (LL) for U/t < 1 [see Fig. 1(c)].
We do not, however, find a direct transition between these
phases—rather, with increasing ¢ /U, the WM insulator first
transitions into an intermediate phase with gapless spin-
singlet Cooper-pair excitations and a gap to spin excitations.
Further increasing ¢, there is a subsequent transition at 7., /U
where the spin gap closes and we recover the LL. Thus, the
melting of the WM insulator fits into the schematic shown
in Fig. 1(a). For case (i), the Mott insulator melting transi-
tion follows the sequence C0S0 — C1S0 — C1S1, while for
case (ii), the sequence is given by C0S0 — C150 — C252.
In both cases, the transition proceeds via an intermediate
Luther-Emery liquid (C1S0). This is the fluctuating “super-
conducting” phase, that appears in a purely repulsive model
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FIG. 2. The two-step Mott-metal transition, as shown in Fig. 1(a), on the XC2 geometry. (b)—(e) support the scenario COS0 — C150 —
C1S1 for the dispersion shown in (a) with two Fermi points. Similarly, (g) and (h) support the scenario COSO — C1S0 — C2S52 for the
dispersion shown in (f) with four Fermi points. The C1S0 phase is a Luther-Emery liquid. Conformal central charge (C) shows a sharp
transition from C = 0 to C = 1 across (b) 7.1 /U = 0.04 [for (a)], and (g) 7.;/U = 0.01 [for (f)]. There is a subsequent gradual increase from
(b)C =1toC =2 across 1, /U =~ 0.1 [for (a)], and (g) C = 1 to C = 4 across 7., /U ~ 0.024 [for (f)]. Different colors represent C obtained
by removing varying number of low-y states (see main text). (c) and (h) Extrapolated spectral gaps A(Q, S.; x) in different symmetry sectors
across the phase diagram for the dispersions in (a) and (f), respectively. Below 7., all symmetry sectors are gapped; between 7.; and ?., the
spin sectors remain gapped while the (Q, S;) = (0, 0) and (2,0) gaps vanish. For ¢ > ., all sectors are gapless. (d), (i) Spin and (e), (j) density
structure factors for three representative points in the phase diagram [marked by the a in (b) and (g)]. In a gapless sector associated with a
specific {Q, S.}, the corresponding SF ~ |k| for small k£ and develops singular cusps at 2kg, or 2kp = 2(kr; + kr>) (see main text).

without any retardation effects by melting the localized spin-
singlet Cooper pairs. This two-step transition is summarized
in Fig. 2 for cases (i) [Figs. 2(a)-2(e)] and (ii) [Figs. 2(f)-2()].
As the phenomenology is largely the same, we will limit our
discussion in the main text to case (i); please see Supplemental
Material [46] for a discussion of case (ii) as well as further
details on these observables.

We use three diagnostics to study the metal-insulator tran-
sition: the conformal central charge, the inverse correlation
length, and the static structure factors. The central charge C
is shown as a function of /U in Fig. 2(b). In the Mott phase,
the ground state is gapped and C = 0. Across t.;/U ~ 0.04
we see a sharp increase in C followed by a plateau around
C =~ 1. This plateau becomes more prominent at larger bond
dimensions [different colors in Fig. 2(b)]. The central charge
C =1 is consistent with two gapless modes, while the two-
component LL has four gapless modes. Hence, this plateau is
strongly suggestive of a distinct intermediate phase. Across
t2/U = 0.1, the system enters the LL phase with C = 2. In
the Supplemental Material [46] we provide an estimate of 7.
and 7.5, with standard error bars, using a scaling collapse.

The inverse correlation lengths are shown in Fig. 2(c).
The iMPS variational wave function is characterized by a
spectrum of correlation lengths, {£(x)}, which has been
shown to map onto the low-energy excitation spectrum
(up to an overall scale factor) as y — oo [49,50]. In
Fig. 2(c), we show the dominant inverse correlation lengths
(“gaps”) in some of the relevant symmetry sectors, labeled
by U(1) charge (Q) and spin (S;) quantum numbers [51]:

AQ, S;) =lim,_, o 1/8(Q, S;; x) [46]. In the Mott phase,
all symmetry sectors are gapped. As we cross .1, the gaps
for spinless excitations [(0,0) and (2,0)] vanish while those
for spinful excitations [(1, 1/2) and (0,1)] are finite. This is
consistent with C = 1 and reveals that the intermediate phase
has gapless charge excitations with a gap to spin excitations.
Across f,, all symmetry sectors show a vanishing gap, con-
sistent with the expected behavior in the LL phase.

The density and spin structure factors (SFs) are shown
in Figs. 2(d) and 2(e). The spin SF is defined as Sy =
13 3 e™(S; - S1y;) where j iterates over the five-site
unitcelland S; = (1/2) 3, 4 c}aoaqﬂc‘j,ﬁ. We define the den-

sity SF as Ng = £ 30, 3, ™ ((n; — ()i — (nigj)))s
subtracting off the average density on each site [46]. In the
Mott insulator, both the density and spin SF are featureless
(nonsingular at any k). At small k, they vanish smoothly as
Ny, Sk ~ k?, indicating a finite spin and charge gap, respec-
tively [52]. In the intermediate phase, the spin SF remains
featureless while N; ~ |k| for small k, indicating that the
charge gap has closed. The density SF also develops singular
peaks at +2kp that appear to diverge in the limit y — oo. In
the LL phase, both the density and spin SF scale as N, Sy ~
|k| for small k and develop singular cusps at £2kp [46].
Five-leg cylinder. To study the effect of an increasing cylin-
der width, we perform calculations on the YC5 geometry with
isotropic hopping amplitudes. Our results are summarized in
Fig. 3. We show both the symmetry-resolved spectrum of in-
verse correlation lengths [Fig. 3(a)], derived from eigenvalues
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FIG. 3. Mott insulator-metal transition at v = 1/5 on the YCS5
geometry. (a) shows dominant inverse correlation lengths in different
symmetry sectors, A(Q, S;), as a function of 7/U. Colors denote
different sectors while the opacity denotes the bond dimension;
data here is for y = 2400, 2800, 3200, 3600, 4000. We see that all
symmetry sectors exhibit similar behavior, showing a gap for ¢t /U <
0.08 and vanishing smoothly for # /U > 0.084. (b) shows the central
charge, extracted from a linear fit to the entanglement entropy vs
correlation length, in the same region. The gapless region has a
central charge C = 6 on the YCS5 geometry, consistent with (a), while
C vanishes in the gapped region. (c) shows a collapse of the data in
(a) after rescaling both axes by powers of the bond dimension (for
scale, we take xo = 3200). This nontrivial result suggests that the
transition is continuous, and allows us to extract critical values of
t./U within each symmetry sector (shown on the plot, see main text
for a discussion).

of the MPS transfer matrix, as well as the conformal central
charge [Fig. 3(b)] across the transition. Data are shown for
bond dimensions y = 2400, 2800, 3200 for all data points;
in the vicinity of the transition, we show additional data at
x = 3600, 4000. We omit data below y = 2400 because they
show strong finite-x effects [46].

We find evidence of a Wigner-Mott insulating phase for
t/U <0.08 which is well characterized by the cartoon in
Fig. 1(c): spatially separated pairs of electrons that form spin
singlets. This state is characterized by a spin and charge gap,
as evidenced by a sharp increase in the inverse correlation
lengths across all sectors. For /U > 0.084, we find that the
inverse correlation lengths in all symmetry sectors appear to
vanish uniformly with increasing x and the central charge
[Fig. 3(c)] approaches C = 6, as expected in the gapless FL
phase. We emphasize that these inverse correlation lengths are
not extrapolated with respect to bond dimension, and hence do
not vanish in the FL phase (cf. Fig. 2). The central charge of
6 is the maximum number of gapless modes for free fermions
on the YCS cylinder, and hence provides strong evidence that
we are in the FL phase.

For all y, the Wigner-Mott insulator melts as 7/U is in-
creased; the location at which it melts, however, exhibits
some x dependence. Moreover, we are unable to apply the
extrapolation method used in the XC2 geometry [46]; this is
likely due to a combination of degeneracies on the cylinder

geometry as well as finite-x effects. Intriguingly, however,
we find that the gaps (inverse correlation lengths) exhibit a
scaling collapse when both A(Q, S;) and the value of /U
are rescaled by powers of the bond dimension. This hallmark
signature of a quantum critical point allows us to approximate
both 7./U as well as the critical exponents. Specifically, we
assume that the gaps take the scaling form A(f, — ¢, x)
¥ F((t- — 1)/ x /%) near the transition, which implies that
A(t. —t) x (t, —t)* as x — oo. In a field-theoretic setting,
the exponent ¢ = vz, can be naturally expressed in terms
of the correlation length (v) and dynamical exponents (z),
respectively, assuming that the transition is truly continuous.
We then fit the parameters {z., {, 8} within each indepen-
dent symmetry sector, obtaining an approximate location for
the transition as well as the critical exponents. The scaling
collapses are shown in Fig. 3(c). We fit each symmetry sec-
tor independently, finding very close agreement with ¢, /U =
0.081(1). Best-fit parameters for the individual sectors are
displayed on Fig. 3(c) and are reported in the Supplemental
Material [46]. Fits are performed by defining a cost function
in terms of the residuals from an interpolated scaling function,
and error bars come from integrating the associated probabil-
ity distribution [46,53]. Smaller error bars on {z., ¢, 6} could
be obtained by taking more data on a finer grid, but a more
precise location for the transition would likely require going
beyond x = 4000.

Discussion. In this Letter, we have analyzed the quantum
melting of a crystalline Wigner-Mott insulator with well-
formed spin singlets into a symmetry-preserving metal using
iMPS-based methods. Experiments in moiré TMDs are al-
ready well placed to study such transitions in detail in the
future. For two-leg ladders, we find clear evidence for an
intermediate gapless Luther-Emery phase, which is distinct
from the usual Luttinger liquid. This one-dimensional analog
of a fluctuating superconductor may enjoy enhanced stability
due to the low dimensionality of the system—a true 2D analog
would be an interesting subject of future work. In the system
studied here, kinetic energy-driven quantum fluctuations fa-
vor melting the spin singlets into a fluctuating (spin-gapped)
superconductor without a gap to Cooper-pair excitations. Ex-
tending this picture to the case of the recent experiments
[15,16], which observe superconductivity in the vicinity of a
correlated insulator, remains an interesting future direction.

We have studied the effect of increasing the spatial extent
along the second dimension by analyzing the same problem
on five-leg cylinders. There, we find that the intermediate
gapless phase vanishes altogether, yielding to a continuous
bandwidth-tuned metal-insulator transition. Developing com-
plementary analytical methods in two spatial dimensions,
going beyond the usual large-N parton-based approaches, to
study these transitions is clearly also desirable in light of our
findings. It is especially challenging to describe such continu-
ous metal-insulator transitions in the absence of any remnant
Fermi surface in the insulating state [54,55], associated with
even neutral (e.g., spinon) excitations [56], as observed in our
five-leg cylinders. Investigating the effect of inhomogeneities
on transport near this metal-insulator transition, building on
previous studies at other fillings [57-59] will be of direct
experimental interest. Since there is a tendency towards su-
perconductivity near the melting transition associated with the
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Wigner-Mott insulator, it is natural to address the fate of the
ground state with additional doped holes [60,61]. Given the
proximity to charge-ordered states, the resulting superconduc-
tor might also be a pair-density wave [62]. The importance
of proximity to the quantum critical point(s), if any, on the
associated phenomenology for the doped case also remains an
important open question.
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