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Vacancy-assisted superfluid drag
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We study superfluid drag in the two-component Bose-Hubbard model with infinitely strong repulsive interac-
tions. In this system, all transport is mediated by the motion of empty sites, or “holes,” and it is hard to move one
component without moving the other. We demonstrate, with a combination of analytic and numeric techniques,
that the motion of holes leads to strong dissipationless coupling between currents in the two components. This
behavior is attributable to polaronic correlations that emerge in the presence of spin currents, which can be
observed in experiments. We derive a closed-form expression for the coupling on various lattices in arbitrary
spatial dimensions, which we verify through numerical simulations on two-dimensional lattices.
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I. INTRODUCTION

In an interacting multicomponent system, internal forces
tend to oppose the relative motion of the constituents. In
classical fluids this is a dissipative “drag” force. An analogous
effect is seen in multicomponent superfluids, in the form of a
dissipationless “superfluid drag” first recognized in the con-
text of 3He and 4He mixtures [1]: Inducing a superflow in the
4He also leads to one in the 3He. This is sometimes termed the
Andreev-Bashkin effect. The magnitude of the coupling, how-
ever, is quite small both in helium and in dilute gases [2–6].
The situation is more dramatic for two-component bosons on
a lattice [7–10]. Near the jamming limit of one particle per
site, the superfluid drag becomes very strong. Using analytic
and two different numerical methods, we determine the value
of the drag coefficient for a hard-core two-component gas of
lattice bosons. We also explore the resulting spin correlations.

Two-component lattice bosons display a rich set of su-
perfluid phenomena [9–12]. In the weakly interacting limit,
each component acts as an independent superfluid with a
well-defined phase, denoted φ↑ and φ↓. Strong attractive in-
teractions can lead to a paired-superfluid [10], where the
energy only depends on the sum of the phases: � = φ↑ + φ↓.
Similarly, repulsive interactions can cause binding between
particles of one species and holes of the other, resulting in
a counter-superfluid where the energy only depends on the
phase difference ϕ = φ↑ − φ↓ [13]. When the interactions
are strong, these superfluid states compete with magnetically
ordered insulating states that arise at commensurate filling
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fractions [10,14,15]. Near the ordering transitions, drag ef-
fects become large.

We focus on the hard-core limit, where only a single parti-
cle can sit on a site. At unit filling (sometimes referred to as
“half-filling” in this context), the system is jammed and the
ground state is highly degenerate. Adding a single hole breaks
this degeneracy and allows the atoms to rearrange themselves,
much like a children’s puzzle where a missing tile allows one
to rearrange a scrambled image. As with the fermionic case,
the energy is minimized by taking a symmetric combination of
all possible patterns [16,17]. This is an xy ferromagnet if one
treats the two components as the z component of a pseudospin.
Adding supercurrents frustrates this ferromagnetism, leading
to a spin-polaron where the phases twist more rapidly near the
location of the hole.

This physics is readily studied by cold atoms in optical lat-
tices. The most natural realization involves using two different
hyperfine states of a single atomic species, such as 87Rb. Su-
perfluid drag can be probed by the response to spin-dependent
forces by studying collective modes [4,18], or the behavior
of vortices [5,8,19]. In cold gas microscopes, one can even
observe the positions of individual atoms, allowing one to
directly measure how the spins twist near a hole [20–25].

Calculating superfluid drag is challenging. At the level of
mean-field theory, the drag coefficient is zero. Corrections due
to quantum fluctuations can be treated using the Bogoliubov
formalism [26–28] or the quantum Gutzwiller ansatz [29], al-
though such calculations cannot reliably capture the behavior
of strongly correlated superfluids. In the strongly interacting
limit, the superfluid drag has been computed by studying the
statistics of world-lines in quantum Monte Carlo simulations
[7–10], though the low hole density limit presented chal-
lenges. More recently, Refs. [30,31] studied superfluid drag
in one-dimensional models using tensor network methods.
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We build off of all these prior works, studying superfluid
drag in the limit of hard-core interaction on two-dimensional
lattices via three complementary techniques. We present an
analytic calculation that allows us to calculate the exact drag
coefficient in the limit of vanishing hole density (in any di-
mension). We supplement this with infinite matrix product
state calculations on cylinder geometries with transverse size
C = 3, 4, 5. These allow us to consider finite hole density, but
require extrapolating to C → ∞. Finally, we use a quantum
Monte Carlo approach to calculate the drag in finite torus
geometries of L × L sites with L ∼ 20.

All three techniques have different regimes where they are
most reliable. The analytic calculation only works at vanish-
ing hole density. Conversely, the Monte Carlo calculations
are most reliable at large hole densities. The tensor network
calculations bridge these two limits, but they have significant
finite-size effects. With appropriate extrapolation techniques,
we find that all three approaches agree with one another. Thus
we are able to present a well-validated global view.

II. SUPERFLUID DRAG

The low-energy properties of a multicomponent superfluid
are dominated by phase fluctuations in the order parameters
for each species [7]. For a single-component superfluid, the
energetic cost of phase gradients is set by the superfluid stiff-
ness. Supercurrents are proportional to the phase gradient,
and one can interpret the superfluid stiffness as the density
of particles that participate in dissipationless flow [32]. For a
multicomponent system, there is a matrix of stiffnesses, e.g.,
the energy can be written

E = E0 + 1

2

h̄2

m

∫
dx (∇θ↑ ∇θ↓)

(
ρ↑↑ ρ↑↓
ρ↑↓ ρ↓↓

)(∇θ↑
∇θ↓

)
,

(1)
where E0 is a constant that does not depend on the phase gradi-
ents. If the different spin species interact with one another, the
off-diagonal elements of the stiffness matrix will generically
be finite. The existence of finite off-diagonal elements means
that the current in one component depends on the phase twists
of both components, j↑ ∝ ∂E/∂∇θ↑ ∝ ρ↑↑∇θ↑ + ρ↑↓∇θ↓.
Applying a force to one component would twist its phase,
generating currents in both. This phenomenon is what we refer
to as superfluid drag.

In the two-component system, the off-diagonal coefficient,
ρ↑↓, controls the magnitude of the current response in one
component due to a phase twist in the other component. For
this reason, ρ↑↓ also controls the magnitude and sign of the
interaction between vortex excitations of different species [8].
The drag coefficient, κ = ρ↑↓/

√
ρ↑↑ρ↓↓, is a dimensionless

number that quantifies the relative importance of the super-
fluid drag in a given system. We are considering the symmetric
case in which ρ↑↑ = ρ↓↓.

III. MODEL

We consider the two-component Bose-Hubbard model on
a two-dimensional (2D) square lattice:

H = −t
∑

〈i, j〉,σ
(a†

iσ a jσ + H.c.) + U

2

∑
i,σ,τ

niσ niτ − μ
∑

iσ

niσ ,

(2)

where aiσ , aiτ are the bosonic annihilation for spin species
σ, τ =↑,↓ on site i, niσ = a†

iσ aiσ , and μ is the chemical
potential. Note that Eq. (2) has an SU(2) spin symmetry: the
Hamiltonian is invariant under rotations Us that mix the spin
species. One might also consider models that break this sym-
metry, e.g., if the interspecies interaction strength differs from
the on-site interaction strength. This distinction is irrelevant in
the strongly interacting limit considered here.

In the limit t/U → 0, the interaction term can be replaced
by a hard-core constraint, which can formally be treated as
an operator identity, aiσ aiτ = 0. For finite but small t/U ,
the leading-order correction to this hard-core model is a
nearest-neighbor ferromagnetic Heisenberg interaction with
coefficient J = 4t2/U . At unit-filling, this typically implies
that the ground state is a Mott insulator with XY ferromag-
netic order, though other magnetic orders can be found at
unit filling if one breaks the SU(2) spin symmetry [14]. We
will not include such superexchange terms in our modeling,
restricting ourselves to the t/U → 0 limit. At unit-filling, the
ground state will be highly degenerate, but adding holes will
break the degeneracy, leading to a ferromagnetic ground state.
This phenomenon is known as kinetic magnetism: the kinetic
energy of itinerant holes is maximized when the spin wave
function is fully symmetric [16]. Crucially, for t/U � 1, this
implies that the doped ground state will always be ferromag-
netic, irrespective of the magnetic order at unit filling. We
parametrize the particle number by the density of vacancies,
xv = 1 − n↑ − n↓.

In this lattice model, it is natural to make the substitution
h̄2/m → 2ta2 in Eq. (1), where a is the lattice spacing. We
also work in units where a = 1. In doing so, the superfluid
densities become dimensionless numbers.

IV. VARIATIONAL FORMULATION

Our primary strategy involves using a variational principle
to calculate the superfluid density tensor. The energy in Eq. (1)
can be found by minimizing the energy in Eq. (2) with the
constraint that θ↑ and θ↓ have a fixed profile. In particular,
we consider a linear phase gradient where ∇θ↑ = k↑ and
∇θ↓ = k↓ are constant in space. To simplify the arithmetic,
we introduce a gauge transformation that effectively places us
in the frame of the moving superfluid. In particular, we define
H̃ = UHU †, with

U (k, q) =
∏

j

exp[ir j · (k(n j↑ + n j↓) + q(n j↑ − n j↓))] (3)

corresponding to a spin-dependent Galilean boost. Here k =
(k↑ + k↓)/2 relates to uniform currents where both compo-
nents flow in the same direction. Conversely, q = (k↑ − k↓)/2
corresponds to counterflow. The vector r j gives the x and y
coordinates of the jth site, which are chosen to sit on a square
grid with unit spacing.

The transformed Hamiltonian (in the hard-core limit) is

H̃ = −
∑

〈i, j〉,σ
ti j,σ (a†

iσ a jσ + H.c.) − μ
∑

iσ

niσ , (4)

with ti j,↑ = tei(k+q)·(ri−r j ) and ti j,↓ = tei(k−q)·(ri−r j ). We
then must find E (k, q) = min{|ψ〉}〈ψ |H̃ |ψ〉, where the
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minimization is constrained to be over the set of
translationally invariant wave functions {|ψ〉}.

As k, q → 0, the energy of the resulting current-carrying
state is given by

[E (k, q) − E0]/t = ρ+k2 + ρ−q2 + · · · , (5)

where E0 is the ground-state energy and t is the tunneling
matrix element. The coefficients ρ± = (ρ↑↑ + ρ↓↓ ± 2ρ↑↓)/2
are the superfluid densities in the density (+) and spin (−)
channels. These are the eigenvalues of the superfluid density
matrix, and the drag coefficient is κ = (ρ+ − ρ−)/(ρ+ + ρ−).

We again emphasize that the energy minimization must be
taken with the constraint that |ψ〉 is transitionally invariant.
Since H̃ is gauge-equivalent to H , the unconstrained mini-
mum would result in E = E0, independent of k and q.

We carry out the constrained minimization in two ways. In
Sec. V we find the exact minimum in the limit of a single hole.
In Sec. VI we use the variational uniform matrix product state
(VUMPS) method to numerically optimize a translationally
invariant matrix product state. Conversely, the Monte Carlo
calculations in Sec. VII do not rely upon this variational
formulation, but instead extract the superfluid density from
the statistics of world line winding numbers.

V. PERTURBATION THEORY
IN THE SINGLE-HOLE LIMIT

As noted earlier, the ground state of Eq. (2) at unit-filling,
zero magnetization, and U = ∞ is highly degenerate. This
degeneracy is broken by adding a hole, in which case the
ground state becomes an easy-plane (XY ) ferromagnet. We
pick a preferred in-plane direction and write the unit-filled
parent state as |φ〉 = ∏

j b†
j+|0〉, where |0〉 is the vacuum

and b†
j± = (a†

j↑ ± a†
j↓)/

√
2 creates a boson in a superposi-

tion of the two spin states. This is an eigenstate of Sx j =
(a†

j↑a j↓ + a†
j↓a j↑)/2, which is the x component of the local

spin operator S j . The ground state with a single hole is |ψ0〉 =
(1/

√
Ns)

∑
j b j+|φ〉, where Ns is the number of sites. One can

readily verify that |ψ0〉 is an eigenstate of Eq. (2).
We now add phase twists, as detailed in Sec. IV. The

Peierls phases break the SU(2) invariance of the kinetic term,
and in our rotated basis the Hamiltonian H̃ takes the form

H̃/t = −
∑
〈i, j〉

(b†
i+b j+ + b†

i−b j−)eiri j ·k cos(ri j · q) + H.c.

− i
∑
〈i, j〉

(b†
i+b j− + b†

i−b j+)eiri j ·k sin(ri j · q) + H.c.,

(6)

where ri j = ri − r j . We have omitted the chemical potential
as we will explicitly conserve the particle number, making
it unnecessary. As before, the hard-core constraint implies
b†

iσ b†
iτ = 0, with σ, τ = ±, so the terms in Eq. (6) only allow a

particle to hop onto another site if that site is originally empty.
The second line corresponds to hopping events in which the
particle’s spin flips. In what follows, we will perform pertur-
bation theory in k and q in order to determine the energy to
O(k2, q2).

As already argued, when q = 0 and k = 0, the single-hole
ground state of Eq. (6) is |ψ0〉 = (1/

√
Ns)

∑
j b j+|φ〉. This

function is an eigenstate of the first term in Eq. (6), and
it remains the lowest energy uniform state when k �= 0 and
q = 0. The resulting superfluid density is ρ+ = n̄+(1 − n̄+).
This result coincides with what one expects from mean-field
theory.

When q �= 0, H̃ contains terms where a + spin sitting
beside a hole can be converted into a − spin while hopping
onto the empty site. To leading order in q we only need to
include a single such flipped spin, and we can make the ansatz
that the uniform ground-state wave function takes the form

|ψ〉 = 1√
Ns

∑
j

b j+

⎛
⎝ f0 +

∑
s �=0

fsb
†
j+s,−b j+s,+

⎞
⎠|φ〉, (7)

where fs �=0 ∝ q is small. One recognizes f0 as the amplitude
to have no flipped spins. The coefficient fs is the amplitude
to have a single flipped spin, separated from the hole by
the vector s. Contributions to the wave function involving
more flipped spins will be suppressed by higher powers of q.

Given the wave function in Eq. (7), we now solve the
Schrödinger equation H̃ |ψ〉 = E |ψ〉 to determine E (k, q). To
simplify notation, we introduce

tu = teik·u cos q · u, (8)

λu = teik·u sin q · u, (9)

εp = −
∑

u

tue−ip·u, (10)

ηp = −i
∑

u

λue−ip·u, (11)

where the sum over u denotes a sum over nearest neighbors
on the square lattice. The Schrödinger equation yields coupled
equations for the coefficients f0 and fs:

E f0 = ε0 f0 − i
∑

u

λu f−u, (12)

E fs =
∑

u

[−tu(1 − δs,u) fs−u − δs,u(tu f−u + iλu f0)]. (13)

Our interpretation of Eq. (13) is that the flipped spin [initially
displaced by s from the hole in Eq. (7)] can hop around like
a normal particle, except that it can hop over the hole, i.e.,
hopping from u to −u. This correlated hopping process is the
origin of the coupling between density and spin degrees of
freedom in the single-hole calculation. There is also a process
where the flipped spin can be created/destroyed if it is on a
site neighboring the hole. The matrix element for this process
is −iλu.

We solve Eqs. (12) and (13) by making a Fourier expan-
sion,

fs�=0 = 1√
Ns

∑
p

eip·sgp, (14)

gp = 1√
Ns

∑
s�=0

e−ip·s fs + c, (15)

where the constant c may be chosen arbitrarily. This free-
dom reflects the fact that this Fourier expansion contains one
more degree of freedom than the coefficients fs with s �= 0.
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Summing over s in Eq. (13), we find

(E − εp)(gp − c) = 1√
Ns

∑
u

[1 − e−ip·u]tu f−u + 1√
Ns

ηp f0.

(16)
Notably, the right-hand side depends only on f0 and fu for u a
nearest neighbor of zero. We can then write an arbitrary fs in
terms of these via

fs = 1√
Ns

∑
p

eip·s(gp − c) (17)

=
∑

u

tu f−u(�s − �s−u) + f0�s, (18)

where we have defined

�s = 1

Ns

∑
p

eip·s

E − εp
, (19)

�s = 1

Ns

∑
p

eip·sηp

E − εp
. (20)

Given this form of fs, we can fix all the free parameters in
Eq. (7) by solving Eqs. (12) and (13) for all s which are a
neighbor of zero. On a regular lattice with coordination num-
ber z, this yields z + 1 coupled equations. These are solved in
Appendix A, resulting in

E (k, q)/t = −4 + k2 +
(

1 − κ

1 + κ

)
q2 + · · · , (21)

where κ , the superfluid drag coefficient, is given by

κ =
∫

d px d py

(2π )2

cos 2px − 1

−4 + 2 cos px + 2 cos py
(22)

= 1 − 2/π. (23)

We emphasize that Eq. (21) should be understood as the en-
ergy density per hole when comparing to a result at finite hole
density xν = 1 − ∑

σ n̄σ . Comparing with Eq. (5), we find

lim
xν→0

ρ+ = xν, lim
xν→0

ρ− = xν

π − 1
. (24)

As already discussed, ρ+ is consistent with the low xv limit
of the mean-field result ρ+,MF = xν (1 − xν ). At the level of
mean-field theory, one would expect ρ− = ρ+, i.e., a drag
coefficient κ = 0. The depletion of the superfluid density in
the spin channel is a consequence of strong superfluid drag
induced by the correlated hopping term between the flipped
spin and the single hole.

We conclude this section by noting that the same calcu-
lation straightforwardly applies to single-hole limits of other
regular lattices. In one dimension, we find a drag coefficient
κ1D = 1, which is consistent with kinetic constraints: parti-
cles of different spin cannot move around one another, so
ρ− = 0. On an n-dimensional hypercubic lattice, we find that
κnD ∼ 1/(z − 1), where z = 2n is the coordination number.
On the 2D triangular lattice, we find κ� ≈ 0.23. These results
are consistent with the picture that lattices with greater coor-
dination number are more “weakly interacting.” Indeed, as the
origin of superfluid drag in this limit is the correlated-hopping
term, increasing z creates more opportunities for the spin to
hop “normally,” thus decreasing the superfluid drag.

For comparison with our numerics, we can also consider
finite L × L lattices with periodic boundary conditions, or
infinite cylinders of circumference C. In the former, the inte-
grals over kx and ky in Eq. (22) are replaced with sums where
kx = 2πnx/L and ky = 2πny/L, where nx, ny are integers be-
tween 0 and L − 1. For infinite cylinders, the kx integral
remains, but the ky integral is replaced by a sum. For C =
3, 4, 5 we find κ = 2 − √

7/3, 2 − (1/2)
√

5 + 2
√

6, 2 −
(1/5)

√
35 + 2

√
205. We emphasize that these results are ex-

act, and do not rely upon any approximations.

VI. MATRIX PRODUCT STATES

The approach in Sec. V does not readily generalize to
larger hole density, xv . Thus we turn to a numerical approach.
We make the ansatz that |ψ〉 can be written as a translationally
invariant matrix product state [33]. We then minimize the
energy over the space of all such states.

For these calculations we consider an infinite cylinder ge-
ometry, taking cylinders of circumference C = 3, 4, 5. The
sites of this lattice are then arranged in a one-dimensional line
[34]. Thus our ansatz is a uniform matrix product state with
a unit cell of C sites. We use the VUMPS algorithm [35] to
minimize the energy at fixed bond dimension χ , correspond-
ing to the largest size of the matrices in the ansatz. As χ is
made larger, the ansatz becomes more expressive. We should
recover the exact result in the limit χ → ∞.

We first perform the minimization with k = q = 0. We
then repeat the calculation for a series of small k and q,
which are oriented along the long axis of the cylinder, taken
to be the x-axis. For sufficiently small twists, we converge to
the lowest-energy translationally invariant ground state, from
which we extract ρ± via Eq. (5). We previously used the
same procedure to determine the superfluid density of the
1D single-component Bose-Hubbard model [32]. As in that
work, here it is essential not to constrain the total density or
magnetization using conserved quantum numbers [36]—one
may readily show that the energy of H̃ (k, q) with respect to a
spin and density-conserving iMPS is independent of k and q.
We repeat our calculations for a sequence of χ and extrapolate
to χ = ∞, a procedure referred to as finite entanglement
scaling [32,37]. For C = 3 we used χ � 120, for C = 4 we
used χ � 140, and for C = 5 we used χ � 160.

VII. MONTE CARLO

The matrix product state calculations in Sec. VI are lim-
ited to cylinders of modest size, so we supplement them
with quantum Monte Carlo calculations using the Worm al-
gorithm [38,39] as formulated for two-component hard-core
bosons [40]. We adapted those techniques to incorporate
the hard-core interspecies interactions from Eq. (2). Related
Monte Carlo studies were performed by Kaurov, Kuklov,
and Meyerovich [7], who used a discrete-time Monte Carlo
approach with the worm algorithm to simulate a two-color J-
current model on a two-dimensional square lattice, effectively
modeling hard-core two-component boson systems. However,
the accuracy of their results was limited by systematic errors
arising from time discretization and temperature dependence.
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0 0.25 0.5
0

0.5

1

FIG. 1. Superfluid fractions, ρs, in both the density (ρ+, top) and
spin (ρ−, bottom) channels as a function of total hole density xν =
1 − n↑ − n↓. Superfluid densities are normalized by the mean-field
SF density ρ+,MF = xν (1 − xν ). Blue dots show results of the iMPS
calculations on infinite cylinders of circumferences C = 3, 4, 5, and
the black line shows an extrapolation C → ∞ (see the main text).
Stars denote the analytic results in the limit of vanishing hole density
for finite cylinders (blue), a 20 × 20 torus (red) and in the thermo-
dynamic limit (black). Note that the analytic calculation predicts no
circumference dependence for ρ+ as xν → 0, hence only one star
is shown. In all cases, we consider a square lattice. The dip in ρ+
at xv = 1/3 for the C = 3 cylinder is related to commensurability.
Red dots show quantum Monte Carlo results on a 20 × 20 torus
at inverse temperature β = 40/t , which agrees quite well with the
iMPS extrapolation for moderate dopings.

The superfluid stiffness for each component is deter-
mined using the winding number [41], expressed as ρi j =
〈Wi · Wj〉/dLd−2β, where the components of the vector Wi
count how many times paths of particles to type i wind
about each direction in the periodic unit cell. Here d = 2
is the dimensionality of the system, L is the linear sys-
tem size, and β is the inverse temperature. The covariance
matrix for the winding numbers is diagonalized by consid-
ering symmetric and antisymmetric combinations, and we
extract ρ± = 〈W2

±〉/dLd−2β, where W± = W1 ± W2. As al-
ready discussed, these relate to mass and spin transport. The
drag coefficient is κ = (ρ+ − ρ−)/(ρ+ + ρ−). As with the
calculations in Sec. VI, here we work in the grand-canonical
ensemble, controlling particle numbers by adjusting the chem-
ical potentials.

VIII. RESULTS

Figure 1 shows the superfluid fractions ρ±, normalized
by the mean-field superfluid density ρ+,MF = xν (1 − xν ), as
a function of total hole density for iMPS calculations on
cylinders of circumference C = 3, 4, 5 (blue). Stars of the
associated color show the perturbative results at infinitesimal
doping, which are in close agreement with the iMPS calcula-
tions on every cylindrical geometry shown. Black stars show
the perturbative result in the full 2D limit. The solid black
curve shows the result of an extrapolation of the numerical
ρ−(C), where we assume the form ρ−(C) = ρ− + α/C2. We
do not attempt a similar extrapolation of ρ+(C), as the C = 4

0 0.25 0.5
0

0.1

0.2

0.3

0.4

0.5

FIG. 2. Superfluid drag coefficient, κ = (ρ+ − ρ−)/(ρ+ + ρ−),
as a function of hole density xν . Blue dots show results of the iMPS
calculations on infinite cylinders of circumferences C = 3, 4, 5, and
the black line shows the extrapolation of iMPS results as C → ∞.
Stars denote the analytic results on finite cylinders (blue), a 20 × 20
torus (red), and in the thermodynamic limit (black). Red dots show
quantum Monte Carlo results on a 20 × 20 torus at inverse tempera-
ture β = 40/t , which agrees very well with the C → ∞ limit of the
iMPS results.

and 5 data are nearly indistinguishable. Red dots show the
result of our quantum Monte Carlo calculations on a 20 × 20
torus at inverse temperature β = 40/t , over the parameter
range where finite-size/temperature effects are reasonably
small (see Appendix B).

For all xv , we find that ρ+ remains close to the mean-field
prediction ρ+,MF = xv (1 − xv ). Indeed, ρ+ in this model is
simply the superfluid density of hard-core bosons, which is
known to deviate only small amounts from ρ+,MF [14]. The
spin channel, by contrast, shows a significantly diminished
stiffness relative to the mean-field prediction. This devia-
tion increases in the dilute-hole limit, where the kinetics are
more constrained. Conversely, when the hole density is large,
xν → 1, we expect ρ− → ρ+,MF as there the interactions are
negligible. The kinetic effects of interactions are enhanced on
smaller cylinders, and ρ− increases monotonically with C.

When C = 3 we see features in ρ+ near xv ≈ 1/3 and 2/3,
which arise due to proximity of the system to a density-wave
state. In particular, one can create a Mott insulator if the
hopping along the cylinder, tx, is made much smaller than the
hopping around the circumference, ty. Similar physics occurs
on the two-leg ladder at xv ≈ 1/2 [42]. We do not, however,
see such features in the larger cylinders. For xν < 0.5, we see
a small deviation between the iMPS and Monte Carlo calcu-
lations of ρ+, which we attribute to finite size/temperature.

Similarly, when extrapolated to C = ∞, the iMPS calcu-
lation of ρ− agrees well with the Monte Carlo calculation.
Moreover, as xν → 0, we see excellent agreement with the
analytic calculations.

In Fig. 2 we show the superfluid drag coefficient, κ =
(ρ+ − ρ−)/(ρ+ + ρ−), as a function of xν . Again, we find
excellent agreement between the numerical calculations on
finite cylinders (colored dots) and the analytic result (stars).
The black curve denotes an extrapolation in which we
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compute κ using the extrapolated ρ− (see above) and ρ+(C =
5). This extrapolation agrees very well with our Monte Carlo
results. We take the agreement between the three methods as
a strong indication of the reliability of our results. The extrap-
olated drag coefficient increases monotonically as xν → 0,
approaching its asymptotic value 1 − 2/π .

One way of interpreting these results is that, in the presence
of spin currents, mobile holes are dressed by a “polaron”
of flipped spins. This polaronic physics is only apparent in
the presence of counterflow supercurrents: As evidenced by
Eq. (6), the current-free ground state in the rotated basis is
simply the fully polarized ground state of hard-core b+ bosons
at filling fraction 1 − xν .

To reveal the polaron, we introduce spin operators s̃x j =
(ã†

j↑ã j↓ + ã†
j↓ã j↑ )/2, s̃y j = i(ã†

j↑ã j↓ − ã†
j↓ã j↑ )/2, and s̃z j =

(ã†
j↑ã j↑ − ã†

j↓ã j↓ )/2, which form the coefficients of the vector
s̃ j , defined in the rotated frame [see Eq. (3)]. We have an xy
ferromagnet, so the vector 〈S̃〉 = ∑

j〈s̃ j〉/Ns has a nonzero
expectation value in the x-y plane. Near a hole, the spins
will be twisted relative to this mean field. This twist can be
quantified by ϒi− j = 〈S̃〉 × 〈Pi s̃ j〉 · ẑ, where Pi is the projector
onto having a hole on site i. Equivalently, ϒ j ∝ 〈sin(θ j − θ )〉,
where θ j and θ are the in-plane angles of the spin a distance j
from the hole, and one very far from the hole. For the analytic
wave function in Sec. V, we have

ϒ j = 1

2i
f ∗

j f0, (25)

where we have used that f j is purely imaginary. Thus in the
single hole limit, |ϒ j |2 is proportional to the probability that a
flipped spin is separated from the hole by j sites.

We can produce a more physical interpretation of ϒ j by
returning to the laboratory frame [undoing the transforma-
tion in Eq. (3)]. There, on average, the in-plane spins rotate
with wave vector q. This twist costs energy due to the mis-
alignment of neighboring spins. In our variational ansatz,
the energy is reduced by twisting the spins faster when they
are near a hole and slower when they are farther away.
This spatial dependence of the pitch is encoded in ϒ . One
could directly measure this quantity by using the techniques
from [20–25,43]. As a consequence of the arguments in Ap-
pendix A, ϒ j ∼ ( jxqx + jyqy)/| j|2 for large | j|.

Figure 3 shows ϒ j calculated from the MPS calculations
on a C = 4 circumference cylinder. Here we take the twist
and the displacement j to both point along the x axis. As
can be seen, the spin disturbance is localized near the hole. It
becomes larger with a smaller hole density, with the expected
power-law tails appearing as xv → 0.

IX. EXPERIMENTAL CONSIDERATIONS

As already explained, the most obvious platform for ex-
ploring this physics is atoms in optical lattices, and a detailed
discussion of approaches to measuring superfluid density in
single component systems can be found in [32]. There are ad-
ditional approaches to detecting superfluid drag. For example,
as argued in [7,8], superfluid drag has a dramatic impact on
the vortex structures.

Previous experiments have explored aspects of superfluid-
ity in two-component lattice bosons [44]. Those experiments

Single hole

10 0 10

0.1

0

0.1

FIG. 3. Spin-hole correlator ϒ j vs position j at various hole
densities xν , determined from tensor network calculations on a C = 4
circumference cylinder (colored points). The phase twist and the dis-
placement j are both taken in the long direction of the cylinder. The
correlation function is normalized by q and 〈P0〉 = xν . The analytic
result for a single hole in two dimensions is shown in black.

were focused on the case in which the two components have
very different hopping matrix elements. Variants of those
techniques can measure drag effects in the SU(2) symmetric
case, though there are subtleties about timescales [45]. More
recent explorations of counterflow superfluidity introduced
techniques that can also be used to diagnose drag effects [46].
Furthermore, drag can be extracted from the ac spin conduc-
tivity [47], or polaronic couplings to cavity modes [48].

Using the equivalence between hard-core bosons and spin
degrees of freedom, this model may also be realized via a
mapping onto internal states of atoms and molecules [43,49]
or the excited states of a transmon [50]. In the former case,
the states of ↑, ↓ and empty sites are encoded in three in-
ternal states that exhibit substantial dipole-dipole coupling
(in neutral atoms, these could be Rydberg states). Using a
stroboscopic driving scheme, one can engineer an effective
antiferromagnetic bosonic t-J model in which the couplings
ti j ∼ r−3

i j and Ji j ∼ r−6
i j are long-ranged. The model studied

here is recovered in the limit t � J [43,51], albeit with cor-
rections due to long-range tunneling. In the case of transmons,
one can map the hole state onto the computational |1〉 state of
the transmon, and the spin states onto the |0〉 and |2〉 states.
Introducing capacitive couplings, the |0〉 and |2〉 excitations
can tunnel between transmons with a matrix element g. The
hard-core boson model studied here is realized in the limit
g � η, where η is the transmon nonlinearity.

X. SUMMARY

The most iconic problems in many-body physics involve
the competition between strong local interactions, which tend
to localize particles, and kinetic effects, which delocalize
them. Here we argue that superfluid drag in two-component
lattice bosons provides an ideal setting for studying this
physics. Near the jamming limit of one particle per site, we
find that the drag coefficient is of order unity: κ ≈ 0.36 on a
2D square lattice. By comparison, κ vanishes in mean-field
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theory. Such a large drag is a remarkable signature of strong
correlations.

We use three approaches to extract the drag coefficient.
The first is an analytic study of a single hole. We calculate
the exact quantum wave function in the presence of a small
phase gradient. We find a polaronic structure where the pseu-
dospin twists faster near the hole. From the energy of this
state, we extract the drag coefficient. Our analytic calculation
does not readily generalize to finite hole density, motivating
a variational approach based upon matrix product states. We
use the VUMPS algorithm, and finite entanglement scaling,
to extract the ground-state energy in an infinite cylinder ge-
ometry, with circumference C. Extrapolating to C = ∞ gives
excellent agreement with our analytic calculation at vanishing
hole density. To develop further confidence in our extrapola-
tion, we compared these results to quantum Monte Carlo on
large lattices with hundreds of sites.

We argue that this physics is experimentally accessible,
using cold atoms in optical lattices, Rydberg atoms in mi-
crotraps, or transmon-based quantum computers. Our model
applies even if the interactions are spin-dependent, as long
as t/U � 1. We largely quoted results for two-dimensional
square lattices, but the calculations can readily be generalized
to other geometries.
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APPENDIX A: DETAILS OF ANALYTIC CALCULATION

Here we fill in the remaining steps of the calculation out-
lined in Sec. V. We first note that we only need to calculate
E (k, q) to quadratic order in k and q. Consequently, we only
need fs to linear order, and on the right-hand side of Eq. (18)
we take

�s ≈ iqx�
x
s + iqy�

y
s, (A1)

where

�x
s = t (�sx+1,sy − �sx−1,sy ), (A2)

�y
s = t (�sx,sy+1 − �sx,sy+1). (A3)

We can also set k = q = 0 in our evaluation of �s,

�s ≈ 1

2tNs

∑
p

eip·s

cos px + cos py − 2
. (A4)

In these linearized expressions, �−s = �s and �−s = −�s.
Consequently f−s = − fs. This allows us to write Eq. (18) as

fs = (iqx f0 − fx )�x
s + (iqy f0 − fy)�y

s . (A5)

Specializing to the cases s = (1, 0) and (0,1), we find

fx = iqx f0
�x

x

1 + �x
x

, fy = iqy f0
�

y
y

1 + �
y
y
, (A6)

where fx = f(1,0), fy = f(0,1), �x
x = �x

(1,0), and �x
y = �

y
(0,1).

Inserting Eq. (A6) into Eq. (A5) gives us the closed-form
expression

fs = iqx f0
�x

s

1 + �x
x

+ iqy f0
�

y
s

1 + �
y
y
, (A7)

which can be slightly simplified by noting that rotational
symmetry implies �x

x = �
y
y. We then use Eq. (12) to arrive

at E = ε0 − 2q2t�x
x/(1 − �x

x ).
To quadratic order, ε0 = t (−4 + k2 + q2), and hence

E/t = −4 + k2 + 1 − �x
x

1 + �x
x

q2. (A8)

Comparing to Eq. (21), we identify κ = �x
x as the drag coef-

ficient.
To calculate κ and the coefficients of the wave function, we

take the thermodynamic limit and write

�x
s =

∫
d px d py

(2π )2

eisx px+isy py (eipx − e−ipx )

2 cos px + 2 cos py − 4
. (A9)

We evaluate this integral by converting the px integral into a
contour integral with the substitution z = eipx , yielding

�x
s =

∫
d py

2π
eisy py

∮
dz

2π i

zsx+1 − zsx−1

z2 − 2wz + 1
, (A10)

where we have defined w = 2 − cos(py). By using the sym-
metries of the square lattice, we can always take sx > 0,
in which case the integrand’s only poles are at z± = w ±√

w2 − 1 = e±χ , where cosh χ = w. Only z− is inside the
contour, and using the residue theorem

�x
s =

∫
d py

2π
eisy py−sxχ . (A11)

This one-dimensional integral can be efficiently calculated
numerically. For specific values of s, we can analytically cal-
culate it. For example,

κ = �x
x =

∫
d py

2π
(w −

√
w2 − 1) (A12)

= 2 −
∫

d py

2π

√
w2 − 1 (A13)

= 1 − 2

π
, (A14)

where the integral is performed by making the substitution
w = 1 + 2 cos(2y).
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0 0.25 0.5
0

0.1

0.2

0.3

FIG. 4. Superfluid drag coefficient κ as a function of hole den-
sity xν obtained from winding number statistics in quantum Monte
Carlo (QMC) simulations on a square lattice for system sizes L = 10
(black), L = 16 (red), and L = 20 (blue) at an inverse temperature
β = L. Error bars, if not shown, are within the symbol size.

A similar approach can be used to calculate the drag
coefficient on a cylinder, where the integral over py is re-
placed by a discrete sum. In particular, on a cylinder of
circumference C,

κ = 1

C

C−1∑
n=0

z−(py = 2πn/C). (A15)

This expression was used to determine the stars in Fig. 2.
For large sx, the integrand in Eq. (A11) is dominated by py

near zero, where χ ≈ |py|, and hence

�x
s ≈ 1

π

sx

s2
x + s2

y

. (|sx| � 1). (A16)

APPENDIX B: CONVERGENCE OF MONTE CARLO
CALCULATION

Here, we analyze both the finite-size and temperature de-
pendence of κ , calculated with our Monte Carlo simulations.
Figure 4 shows κ for square L × L lattices with L = 10,
16, and 20 at an inverse temperature β = L. As described
in Sec. VII, the drag coefficient is calculated from winding
number statistics. In these calculations, we find that κ grows
with L. This is opposite to the C dependence of the zero-
temperature iMPS calculations shown in Fig. 2. The likely

0 0.25 0.5
0

0.1

0.2

0.3

0 0.05 0.1

0.15

0.2

FIG. 5. Superfluid drag coefficient κ as a function of hole density
xν from quantum Monte Carlo (QMC) simulations on a square lattice
with linear system size L = 20. Data are shown for inverse tempera-
tures β = L/2 (green), β = L (blue), and β = 2L (orange). The inset
shows the superfluid drag coefficient κ as a function of temperature
1/β for system size L = 20 and hole density xν = 0.4. Error bars, if
not visible, are within the symbol size.

source of this behavior is the fact that we are simultaneously
changing L and β. As we will demonstrate below, increas-
ing temperature at fixed L suppresses κ . Regardless, the L
and β dependencies are largest at small hole densities. For
L = β = 20, we see that the systematic errors from a finite
system size are of order the stochastic errors when xν > 0.3.

To help disentangle finite-size and finite-temperature ef-
fects, in Fig. 5 we fix L = 20 and calculate κ for three
different inverse temperatures: β = L/2, L, and 2L. Again,
the temperature dependence is strongest at small xν . The drag
coefficient grows with decreasing temperature, but appears to
be a significant fraction of its zero-temperature value, even
for β = L/2. For xν > 0.3 the drag coefficient has largely
saturated to its zero-temperature value as long as β > L. This
behavior is better seen in the inset, which shows κ as a
function of temperature 1/β for system size L = 20 and hole
density xν = 0.4.

Due to computational constraints, we were unable to sim-
ulate system sizes larger than L = 20 or inverse temperatures
greater than β = 2L. The autocorrelation time in our simu-
lations becomes larger at small xν due to kinetic constraints.
These correlations lead to larger statistical errors. Similarly,
increasing the system size leads to larger errors unless we
greatly increase the number of Monte Carlo samples.
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