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I. INTRODUCTION

Superfluidity in condensed matter systems, such as liquid Helium, is most distinctly and

straightforwardly identified by the superfluid density. While ultracold atomic systems have

long realized superfluidity, however, measurement of the superfluid density has proven less

natural and more elusive. It is instead straightforward to measure the condensate density

of ultracold gases via time-of-flight, while superfluidity has been identified through dissipa-

tionless flow [1, 2] and vortices [3, 4]. The superfluid and condensate densities, while often

considered in concert, can be quite different in many regimes of interest. The superfluid

fraction, for instance, must be equal to either 1 or 0 in a Galilean-invariant system at zero

temperature [5]. By contrast, the condensate density is depleted in interacting systems.

Lattice systems, by breaking Galilean invariance, can realize superfluid depletion at zero

temperature as well as anomalously strong superfluid drag [6]. Measuring both the conden-

sate and superfluid densities at low temperature is an important step in characterizing the

properties of ultracold gases.

Here we review proposals for measuring the superfluid fraction in ultracold atomic gases.

We’ll start with a (potentially long-winded) definition of superfluidity, followed by a discus-

sion of complications that arise in cold atom systems. We will then review a few proposals

and experiments that attempt to overcome these difficulties.

II. DEFINING SUPERFLUIDITY

Superfluidity is a phenomenological and collective property of matter. As such, it can be

at once easy to identify and hard to define. We will first consider two thought experiments

proposed by Tony Leggett [7] which will form the basis for a more rigorous and general

definition.

The general setup is to consider a fluid trapped in a thin ring-shaped container. Below a

critical temperature, Tc, it is understood that some (temperature-dependent) fraction of the

fluid will become superfluid. This fraction vanishes as T → Tc and approaches 1 as T → 0.

We will imagine that we can rotate the ring at will and measure its moment of inertia. We

also have control over the temperature. In the first experiment, we rotate the ring slowly

(allowing the fluid to equilibrate to the motion of walls) and then we cool the temperature
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below Tc. What fast and slow means will be addressed later. We then measure the moment

of inertia. We will find that the measured moment of inertia, I(T ), divided by the rigid

body value, I0, can be continuously tuned between 0 (T = 0) and 1 (T ≥ Tc) by changing

the temperature. This is an equilibrium phenomenon known as the Hess-Fairbank effect [8].

The experiment has the implication that the superfluid component does not rotate with the

rest of the fluid. Indeed, this is an illustration that superfluids are irrotational, which is to

say that the superfluid velocity field ~vs obeys ∇ × ~vs = 0. Feynman and Onsager [9, 10]

posited that the superfluid order parameter takes the form of a macroscopic wavefunction,

χ(r)eiφ(r) and therefore the superfluid velocity is equal to ~vs = ~
m
∇φ. As the phase of the

wavefunction must return to its original value modulo 2π, an application of Stokes’ theorem

leads to the Feynman-Onsager quantization condition∮
~vs · d~l =

nh

m
(1)

where m is the particle mass, h is Planck’s constant and n ∈ Z. A finite value of n implies

the existence of a vortex in the velocity field. Solutions for the velocity in this case imply

that vs(r) ∼ 1/r where r is the perpendicular distance to the vortex. Thus, in order for the

physical system to be well-defined, there must be no superfluid density at the vortex core

where r = 0 (hence the annular trap geometry in the thought experiment). This condition

implies that, at a fixed radius, the velocity of the superfluid is constrained to take certain

quantized values. The Hess-Fairbank thought experiment assumes that the angular velocity

of the fluid in the trap is much less than ω0 (the n = 1 rotation velocity) so that the

superfluid is content not to rotate with the normal fluid. It’s also worth making a subtle

point: the importance of the ring trap is now evident as the superfluid velocity vs ∼ 1/r

while the normal fluid (and the cylinder) rotate with a linear velocity v = ωr. We can

therefore only speak of a quantized value of the superfluid angular velocity in a trap that

adequately thin so that we may ignore the irrotational nature of the superfluid. This is a

simplifying feature that will show up in some of the proposals below.

The second thought experiment illustrates metastable superflow, which is a non-equilibrium

phenomenon. We imagine setting the ring into motion at an angular velocity well above

ω0, allowing the fluid to equilibrate, and then cooling below Tc. We then stop the cylin-

der and wait. We’ll find that the normal fluid, due to viscous drag from the walls, slows

down and eventually comes into equilibrium with the walls of the container. The superfluid
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FIG. 1. Dispersion of Bogoliubov excitations in the weakly-interacting Bose gas for two finite

interaction strengths (blue and red) and for the free Bose gas (orange). Dotted lines indicate the

critical velocity from Eq. (2).

component, however, will continue rotating almost indefinitely. This is clearly a metastable

state, as intuition would tell us that the superfluid would energetically prefer to be at rest.

Quantization of superfluid rotation is clearly relevant for this experiment as well, but it

would be disingenuous to provide an explanation solely on that basis. What this thought

experiment illustrates is that there is some degree to which the superfluid does not feel

viscous drag from the walls. Landau came up with an explanation for this phenomenon

and coined the idea of a critical velocity. He imagined a Galilean-invariant system where

elementary excitations have a dispersion ε(p). The fluid is in motion with respect to the

rough walls of the container with relative velocity ~v. The walls can generate excitations of

momentum ~p in their own rest frame, which in the rest frame of the fluid have an energy of

ε(p) + ~p · ~v. Therefore above a certain velocity vc defined as

vc = min

(
ε(p)

p

)
(2)

the walls will generate excitations in the superfluid; for velocities below vc the superfluid

will effectively not experience drag. This condition is illustrated graphically in Fig. 1, where

I have plotted a few different dispersions corresponding to the weakly-interacting Bose gas
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(solid lines). The dispersion crosses over to a simple quadratic form for large momenta,

so the minimum value of ε(p)/p is found as p → 0. The dashed lines are vcp for each

plot. It is shown that for the non-interacting Bose gas (orange), the critical velocity is

zero. This means it does not exhibit metastability: the energy cost of creating excitations is

zero. An important feature of superfluids, then, is that they are stabilized by interactions.

Consequently, it is often said that the non-interacting Bose gas is not a superfluid (even

though the superfluid fraction approaches 1 in the limit of vanishing interactions).

There are a few takeaways from this discussion. From the first thought experiment, we

can see that superfluidity is formally defined in terms of the irrotational condition. This is

the analog to the Meissner effect in superconductors. Phenomenologically we might identify

superfluidity by the presence of vortices and by dissipationless flow, which has been done

in cold atom systems. Finally, we would characterize a superfluid phase by its superfluid

density (also known as superfluid stiffness) and by some measure of its propensity to support

metastable superflow. In general Landau’s original proposal for a critical velocity does not

translate directly to most experimental systems, and one should instead define this stability

in terms of the energy it takes to nucleate a vortex. This will depend on the geometry of the

trap and on the healing length, ξ, which is the characteristic size of a vortex. Nonetheless,

it is important to note that this stability condition is experimentally-relevant and distinct

from the superfluid stiffness.

A formal definition of the superfluid density involves the current response to a vector

potential [11]. In particular, a vector potential will couple to charged particles with an

interaction Hamiltonian of the form

Hint =

∫
d3r ~j(r) · ~A(r) (3)

where ~j(r) is the particle current. In cold atom systems we will usually be thinking of

neutral particles, in which case an artificial vector potential will be established via rotation

or Raman dressing. By the standard linear response relations we can relate the expectation

value of the current to the vector potential by defining a susceptibility. This is particularly

simple upon Fourier transforming,

〈ji〉(k, ω) = χij(k, ω)Aj(k, ω) (4)

where the indices i and j denote spatial directions. The susceptibility can now be decom-
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posed into transverse and longitudinal components,

χij(k, ω) =
kikj
k2

χL(k, ω) +

(
δij −

kikj
k2

)
χT (k, ω). (5)

The superfluid density, ns, is defined in terms of its lack of transverse response [11]. We

have

lim
k→0

χL(k, ω = 0)→ n

m
lim
k→0

χT (k, ω = 0)→ nn
m
, (6)

where nn is the normal fluid density and n is the total fluid density. The superfluid density,

ns = n− nn, is defined as the difference between these two results.

III. COLD ATOM PROPOSALS

The classic methods of measuring the superfluid density, epitomized by Andronikashvili’s

torsional oscillator experiments [12, 13], consider superfluidity and superfluid density very

similarly to Leggett’s thought experiments. In particular, measuring the superfluid density

requires that one (1) apply some rotation to the fluid at a fixed temperature and (2) measure

the current response of the fluid. The current response is usually captured by the equilibrium

moment of inertia: a rotating fluid contributes to the moment of inertia while non-rotating

fluid does not. An appropriate definition of the superfluid density would be

ns
n

= 1− lim
ω→0

(
I(ω, T )

I0

)
(7)

where I0 is expected moment of inertia of the device being rotated and I(ω, T ) is the mea-

sured moment of inertia.

Both of the identified steps pose problems in cold atom experiments. Cold atoms are held

in fixed traps generated by lasers. The force that confines them arises from the interaction

between the electric field of the laser and the dipole moment of the atoms. It is clear

that rotation of the lasers themselves is not an option, so alternative methods must be

developed. The classic method is to induce rotation through “stirring” with a potential

deformation [3, 4, 14, 15], but we will also look at proposals that induce rotation by inducing

an artificial vector potential [16]. Furthermore, one cannot rely on the roughness of the walls

of a container to generate viscous drag. Instead, the optical trap must lack perfect cylindrical

symmetry about the axis of rotation in order to generate transverse current response. In

general this will not be a major sicking point, however, as trap deformities are quite common
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and can be reliably induced when necessary. The second problem involves measurement. The

moment of inertia and angular momentum of a rotating disk are a straightforward quantities

to measure as one can attach probes directly to the fluid-filled container. Measurements of

the effective moment of inertia of a cold atom system must, again, be considerably more

indirect. More fundamentally, the moment of inertia of a few thousand atoms rotating in

a miniscule trap is extremely small. Even without any additional technical challenges, an

analogous torsional oscillator experiment would have to be extraordinarily sensitive [17]. In

general this will motivate non-mechanical (e.g. spectroscopic) methods of measuring the

superfluid density.

Proposals and experiments for measuring superfluid density in cold atoms will either have

to get around these particular problems or will devise altogether distinct methods. Most

proposals will involve a mix of these avenues. Rather than grouping them, I will go through

them sequentially in rough order of how similar they are to these classic experiments and

ideas.

A. Cooper-Hadzibabic

Nigel Cooper and Zoran Hadzibabic have a proposal that most directly takes the classic

rotating disk picture and translates it into the language of cold atoms [17, 18]. It is clearest to

visualize this proposal in a ring-shaped trap of radius R and with a width ∆R� R. Instead

of rotating the trap, they propose using an artificial vector potential generated through

Raman dressing of the hyperfine atomic states [16, 19]. We’ll consider the three F = 1

hyperfine levels of 87Rb, labeled by the quantum number mF = −1, 0, and 1. Introducing

a magnetic field produces a Zeeman splitting ∆Em = gFµBBmF . The atoms are then

addressed by two copropagating Laguerre-Gauss beams that couple the hyperfine levels.

These beams are strongly detuned from the one-photon absorption processes. Instead, the

lasers induce transitions to an excited (virtual) state, as shown in Fig. 2. The difference in

frequencies between the two beams is slightly detuned from the Zeeman splitting, ω1−ω2 =

gFµBB+δ, driving two-photon transitions between the hyperfine states. The Laguerre-Gauss

beams carry finite orbital angular momentum [20], which we’ll call l1 and l2. Two-photon

processes such as the one shown in Fig. 2 change the orbital angular momentum of an

atom by ∆l = l1 − l2. By symmetrically driving the two hyperfine ground states as shown,
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FIG. 2. Schematic for the Raman dressing of hyperfine energy levels, taken from Ref. [18]. Two

beams address the atoms, driving absorption processes up to a virtual state and spontaneous emis-

sion back down to the hyperfine levels. This process adds angular momentum ∆l upon transitioning

between hyperfine levels.

transitions to the excited state destructively interfere with one another. This is known

as electromagnetically-induced transparency (see Appendix A). We invoke the adiabatic

approximation [16, 21, 22], which assumes that the system is within this “transparency

window” and therefore that single-photon transitions to the excited state can be ignored.

The effective Hamiltonian then couples the states {|m = −1, l − ∆l〉, |m = 0, l〉, |m =

1, l + ∆l〉} and can be written in the rotating wave approximation [16] as
~2

2MR2 (l + ∆l)2 − δ ΩR/2 0

ΩR/2
~2

2MR2 l
2 ΩR/2

0 ΩR/2
~2

2MR2 (l −∆l)2 + δ

 . (8)

The diagonal terms contain the azimuthal kinetic energy of the cold atoms in the trap in

terms of the quantized angular momentum, l. The Rabi frequency ΩR characterizes the

strength of the effective coupling between hyperfine states (essentially just µ ·E). Diagonal-

izing the Hamiltonian yields three bands of Raman-dressed hyperfine states, each of which

is minimized at a distinct value of l/∆l as shown in Figure 3. Key to this procedure is that

the separation of the bands (∼ ΩR) is presumed to be large compared to other energy scales
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FIG. 3. Bands obtained by diagonalizing the Hamiltonian in Eq. (8) as a function of l/∆l. I’ve

taken ΩR = 2(∆l)2/MR2 and δ = (∆l)2/2MR2, and the energy is in units of ~2(∆l)2/MR2.

in the problem. This allows the authors to assume that all atoms are in the lowest dressed

band.

What we essentially have now is a method of rotating the atoms in the trap. The authors

show that the part of the energy that depends on l (in the limit of large ΩR) takes the form

~2
M∗R2 (l2/2− ll∗) where l∗ is the value of l that minimizes the energy of the lowest band. This

takes precisely the form of a Hamiltonian in a rotating frame, Hrot = H − ~ω · ~L, where in

this case the effective frequency of rotation is ωeff = ~2l∗/M∗R2.

The artificial vector potential now makes the laboratory frame appear as if it were a

rotating frame. If we imagine gradually shifting l∗ (which is proportional to ∆l(δ/ΩR) at

large Rabi frequencies) from 0 to some fixed value, a normal fluid would respond by rotating

and then relaxing due to trap anisotropies. If ωeff is kept below ω0, the lowest quantized

frequency of rotation of the superfluid, then we would find that the superfluid component of

the gas rotates without relaxation. This is an amusing inversion of the thought experiment,

but it is clear that the same principles apply.

Now we concern ourselves with measuring the superfluid density. Rather than measuring

the rotational inertia, Cooper and Hadzibabic propose a spectroscopic method of extracting

〈l〉, the expectation value of the angular momentum quantum number. If all the atoms

are in the normal state, we would find 〈l〉 = l∗ (recall that having l = l∗ actually means

that the particle is not moving in the laboratory frame). Defining the moment of inertia as
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〈L〉 = ωeffIeff , one can rewrite Eq. (7) to obtain the superfluid density as a function of 〈l〉:

ns
n

= 1− lim
l∗→0

(
〈l〉
l∗

)
. (9)

Now we need a method to measure 〈l〉. Note that the lowest Raman dressed band is a

superposition of the m = −1, 0, and 1 states. We can define the weights of each of these

states as ψm, so |ψ〉 =
∑

m ψm|m〉. The authors find through a perturbative expansion that

|ψ−1|2− |ψ1|2 = p0 + p1l+O(l)2 for small angular momenta, where p0 and p1 are constants.

Knowledge of a statistical average of these weights for the entire system would therefore be

sufficient to extract 〈l〉. Fortunately, the modulus squared of these weights are just related

to the probability that a particle is in a given mF hyperfine level: e.g. N1/N = |ψ1|2. We

can measure the statistical populations of the hyperfine levels through absorption imaging,

which is therefore a means of extracting the expectation value of the angular momentum.

Defining the population imbalance p = (N−1 − N1)/N , the superfluid density in the ring

trap is given by
ns
n

= 1− lim
l∗→0

(
p− p0

l∗p1

)
. (10)

This proposal is quite clever and aesthetically pleasing in its similarities to the classic

thought experiments. While it evades some of the more obvious problems we discussed at

the outset, it introduces some new subtleties as well. The first is the assumption that the

gas remains in the lowest Raman-dressed band. This presumes that other energy scales

(chemical potential, temperature, interaction strength) are small compared to the Rabi

frequency, which is related to the intensity of the Laguerre-Gauss lasers. A recent experiment

realizing this rotation procedure [23] found significant population of the higher angular

momentum states as a function of holding time (which is associated with residual heating).

In general this can be controlled by increasing the laser intensity, but that brings about new

issues: as ΩR is increased, the absolute magnitude of p− p0 decreases, thereby introducing

larger experimental error. This tradeoff assessed in a subsequent paper [18] wherein the

authors found a range of reasonable parameters for the weakly-interacting low-temperature

Bose gas. With that said, further modeling would be necessary to determine how one

might engineer a similar technique in strongly-interacting systems. The authors also claim

that one could implement this scheme for a variety of trap geometries, but complications

abound when one imagines scenarios in which the superfluid density is not constant in

the radial direction (relative to an axis of rotation). Position-resolved absorption imaging
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could potentially provide a local measure of the superfluid density, but these extensions are

not addressed in detail and seem to require further assumptions. This method of inducing

rotation in a trapped gas of cold atoms has been used to observe both the Hess-Fairbank

effect [23] and metastable superflow [24]. The former paper used spectroscopic imaging to

show the existence of a coreless vortex, but to my knowledge no group has implemented the

spectroscopic measurement of the superfluid density.

B. Grimm

A similar proposal and experiment was carried out by Rudolf Grimm’s group [25] on a

unitary Fermi gas (UFG). The UFG is a strongly-interacting Fermi system with a diverging s-

wave scattering length that exhibits paired superfluidity at low temperatures. They confine

the UFG with roughly equal harmonic trapping potentials in the x and y directions and

a significantly weaker harmonic trap in the z direction, resulting in a long, cigar-shaped

cloud. In equilibrium, the superfluid component will sit at the center of the trap. The

authors induce rotation about the z axis by applying an elliptical deformation to the trap

in the x-y plane and rotating it at a fixed frequency. The normal fluid on the edges feels

some friction due to the deformation and rotates in response. As long as the precessing

deformation does not nucleate a vortex, the supefluid component will not rotate. In order

to characterize the superfluid transition, the authors excite a radial quadrupole excitation

by applying a short, static elliptical deformation to the trapping potential in the x-y plane.

This deformation is independent of the one used to spin up the gas. They then measure

the precession frequency of the mode, which is shown in Fig. 4. One might think that the

mode would rotate at the frequency of the elliptic deformation, Ωtrap. This is incorrect – the

static elliptic deformation excites a quadrupolar mode in the static laboratory frame, which

would not precess if the gas did not have any angular momentum. The precession of this

mode for a system with fast (hydrodynamic) collisions is computed in Ref. [27] and is given

by Ωprec = 〈Lz〉/2I0. Note that I0 is the total rigid-body moment of inertia, including the

superfluid component. This frequency can then be used to extract the angular momentum

of the UFG. By dividing the precession frequency by the trap frequency, the authors define

P = 2
Ωprec

Ωtrap

=
I

I0

× Ω

Ωtrap

(11)
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FIG. 4. Schematic of the radial quadrupole mode, taken from Ref. [26].

where Ω is rate at which the normal component of the fluid was rotating and I is the actual

moment of inertia of the system (we took 〈Lz〉 = IΩ). Ideally one would have Ω = Ωtrap,

but in order to account for damping over time they leave this factor in the definition of P .

They do not explicitly state it, but it is clear that one could define a superfluid fraction

ns/n = 1− P if it were reliably the case that Ω = Ωtrap.

There are a few complications in this procedure. The first involves the definition of P :

this method requires one to identify and remove the effects of Ω < Ωtrap in order to get

at the superfluid density. This is all the more pronounced because they introduce a time

delay between the application of the static deformation and measurement of the precession

frequency so that collective modes associated with the rotating elliptic deformation have

a chance to damp out. This requires them to measure an average damping rate of the

precession frequency (due to friction with the walls of the trap) and extrapolate backwards to

determine the initial value of Ωprec. In order to characterize and remove this Ω-dependence,

they plot P versus the time spent in the elliptical rotation and extrapolate. The data for

this procedure is shown in Fig. 5. The parameter P appears to saturate to a long-time

value, at which point it is likely that Ω ≈ Ωtrap. Note that the authors account for the

fact that long tspin will introduce more heat into the system. In this way, the value of

I/I0 can effectively be extracted (albeit by taking a significant amount of data at a given

temperature). Long spin times will in general introduce more heat into the system, but this

effect seems to be manageable. Potentially more serious is the presence of vortices. The
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FIG. 5. Dependence on P = (I/I0)(Ω/Ωtrap) on the time spent in the rotating elliptical deforma-

tion. Taken from Ref. [25].

authors note that resonant quadrupolar deformations are particularly effective at nucleating

vortices [28], which as been taken advantage of in other contexts [3]. The deformation they

introduce is weak in order to compensate for that, but in general they have no way of

determining if a vortex has formed in the superfluid core. Finally, this procedure only works

for systems where the superfluid and normal components can be described hydrodynamically.

The strong interactions of the UFG mean that this is a reasonable assumption, but it would

be incorrect to apply this method to the weakly-interacting Bose gas. This is not necessarily

a positive or a negative feature, but it’s worth keeping in mind that this procedure is not

universally-applicable.

C. Ho-Zhou

A paper by Tin-Lun Ho and Qi Zhou [29] presents a local detection scheme based on the

column-integrated density of a harmonically-trapped gas. The column-integrated density

(e.g. n(x, y) =
∫
n(x, y, z) dz) is one of the few local observables that can be extracted in

cold atom experiments. The geometry they envision is a harmonically-confined 3D trapped

gas where ωx ≈ ωy 6= ωz, but these conditions are not strictly necessary.
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The authors make extensive use of the local density approximation, which assumes that

the local properties of a gas in an inhomogeneous trap are related to the bulk thermodynamic

equation of state. Considering a trapped gas with chemical potential µ(r) = µ− V (r), the

local density approximation amounts to the statement that

n(r) = n(µ(r), T ) (12)

where n(µ, T ) is the density of the bulk homogeneous system. This approximation has been

shown to be quite accurate in ultracold atomic systems [30] and is widely used. The first

thing we will show is how to get from the column-integrated density, n̄(x, y) back to the

3D density, n(x, y, z) (the authors cite Erich’s contribution in this derivation). Starting

with the Gibbs-Duhem relationship, dP = n dµ + s dT , we have that P =
∫
n dµ at fixed

temperatures. By rewriting the average density as a function of x,

n̄(x) =

∫
dydz n(x, y, z) =

∫
dydz n

(
µ− (M/2)

∑
i

ω2
i x

2
i , T
)

=
2

Mωyωz

∫
dỹdz̃ n

(
µ− (M/2)ω2

xx
2 − ỹ2 − z̃2, T

)
=

1

Mωyωz

∫
d(r̃2)dθ̃ n

(
µ− (M/2)ω2

xx
2 − r̃2, T

)
=

2π

Mωyωz

∫
x

dµ n(µ, T ),

(13)

we can obtain the following relationship for the pressure:

P (x, 0, 0) =
Mωyωz

2π
n̄(x). (14)

Note that
∫
x

means that the boundary conditions of the integral are offset by (M/2)ω2
xx

2.

We can then use the Gibbs-Duhem relation again to find

n(x, 0, 0) =

(
∂P

∂µ

)
T

=
∂P (x, 0, 0)

∂x

(
∂µ(r)

∂x

)−1

= − 1

2πx

ωyωz
ω2
x

∂n̄(x)

∂x
. (15)

Manipulations like these, taking us from integrated quantities to bulk thermodynamic quan-

tities using the local density approximation, are the basis of this proposal.

Now, to address the case of a finite superfluid density, the authors consider a system

that is in motion. The velocity of the normal component is vn and that of the superfluid

component is vs; their difference is w = vs − vn. In the frame moving with vn, the Gibbs-

Duhem relationship can be rewritten as

dP = n dµ0 + s dT −Mnsw · dw (16)
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where ns is the superfluid number density and µ0 is the chemical potential in the vn = 0

frame. The last term can just be thought of as a kinetic energy – a momentum density of

the superfluid times its velocity. They proceed to perform the same sort of manipulations in

the small-w limit to obtain an equation for the superfluid density as a function of position,

ns(x, 0, 0), in terms of the column-integrated densities with and without rotation. The

calculation itself is notationally a bit confusing so I will refrain from going into further

details. The key feature, however, are that one can compute the superfluid density as a

function of position in the full 3D system using two column-integrated density profiles: one

while the system is stationary and one while applying a slow rotation.

This method is intriguing because it proposes a local measurement of the superfluid

density, unlike the previous proposals. The authors also make use of a particular local

measurement, the column-integrated density, which can be reliably performed. One potential

shortcoming of this procedure is its assumptions of thermal equilibrium in the presence of

rotation. This is, however, also an implicit assumption in the other schemes presented until

now. One should additionally be cautious about applying the local density approximation to

systems in which the correlation length diverges [31–33] and for strongly-interacting systems

on lattices [34]. This might exclude or complicate the application of this method to certain

“interesting” systems. For a wide variety of systems, however, this method provides a means

to efficiently measure the superfluid density as a function of position. While it has not (to the

best of my knowledge) been used to compute the superfluid fraction, a recent experiment [35]

used the column-integrated density to compute the equation of state of a weakly-interacting

3D Bose gas.

D. Carusotto-Castin

We now step away from direct analogs of the equilibrium thought experiments. A paper

by Iacopo Carusotto and Yvan Castin [36] proposes the use of spatially-localized artificial

gauge fields to measure the local superfluid density. This proposal, unlike the previous ones,

does not assume thermal equilibrium.

The authors envision a pancake-shaped trap that is tightly-confined in the ẑ direction.

The atoms themselves have two hyperfine levels, |a〉 and |b〉, whose energies have been split

using a magnetic field. They address the atoms with three lasers: a control laser (Ωc,kc),
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FIG. 6. Figure showing the schematic Raman driving procedure as well as the physical geometry

of the trap and lasers. The black circle is the location of the atoms. Taken from Ref. [36].

which drives from |b〉 to an excited state |e〉 with some detuning δ, and two probe lasers

(Ω±p ,k
±
p ) that drive from |a〉 to |e〉 with the same detuning (see Fig. 6). The control laser

momentum is pointed along the ŷ direction, as shown, and the probe laser momenta are

given by k±p = kpẑ±q/2 where q, their difference, lies in the x-y plane. The probe lasers are

Gaussian lasers with a waist w that is considerably smaller than the radius of the trapped

gas. This allows for local measurements to be made. They note, however, that the waist

must also be much larger than the healing length, ξ, of the trapped gas. This makes an

important point – superfluidity is a macroscopic (collective) phenomenon, so any “local”

probe of the superfluid density must be larger than some microscopic length scale in order

to observe bulk superfluid effects. It is not explicitly state, but a caveat to the claim that

the fluid need not be in thermal equilibrium is that there must be local thermal equilibrium

on these same length scales. This microscopic length scale is the healing length, which is

the characteristic length scale of the vortices. In the weakly-interacting Bose gas, ~2
mξ2

= ρg

where g is the interaction strength.

Returning to the Raman driving procedure, it is assumed that the control and probe

beams are far detuned from any hyperfine transitions so we can consider the two-photon

process as an effective coupling between |a〉 and |b〉. The authors show that this realizes an
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artificial vector potential in the ŷ direction (c.f. Sec. III A, Appendix A), given by

Ay(r) = ~kc
|Ω+

p |2 + |Ω−p |2 + |Ω+
p (Ω−p )∗eiq·r/2 + h.c.|
|Ωc|2

e−2|r−r0|2/w2

. (17)

To the extent that one can subtract off or ignore the |Ω+
p |2 + |Ω−p |2 term, this vector potential

can be either transverse or longitudinal depending on whether q ⊥ ŷ or q ‖ ŷ, respectively

(recall kc = kcŷ). The part we want to ignore is unmodulated (a constant function of r)

and always contributes to the longitudinal part of the vector potential. Notice that the

vector potential has a Gaussian envelope confining it to the point r0 (the center of the probe

beams) with a waist w, allowing us to apply a local perturbation.

From Sec. II we know that the total density will respond to the longitudinal vector

potential while only the normal component will respond to a transverse vector potential. In

both cases it is required that we take the long-wavelength limit, which is satisfied for qξ < 1.

Thus, the authors have realized a clever way of locally distinguishing the superfluid density.

The question now is how to detect the response. The central issue, clear from the tenets

of linear response, is that a small vector potential means a proportionately small current

response. Note of course that “small” is not just referring the magnitude of Ay: by only

acting on a local region of width w near r0, current will only be generated within that region.

The authors propose two methods for detection. In both, they continuously irradiate

the atoms with the coupling laser but pulse the probe laser with time dependence Θ(t)e−γt:

the laser turns on at t = 0 and then exponentially decays. The reason for the decay is

that, if the local vector potential is applied for too long, non-linear couplings will prevent

one from distinguishing the local superfluid density. They decay rate also cannot be too

short, however, because the system must have time to respond to the perturbation. The

response time is set by the sound velocity of the Bose gas, and thus it should be no surprise

that the constraint fixes γ/csq (the authors show that a value of 10−1 or less gives accurate

measurements). For more complicated systems where such a calculation isn’t possible, the

decay rate γ may have to be calibrated in the experiment.

The first method relies on the fact that the energy deposited into the trapped gas by

turning on the probe laser depends on the current response. Specifically, through linear

response relations and the local density approximation they find that the added energy

∆E ∝ ρn(r0) for q ⊥ ŷ and ∆E ∝ ρ(r0) for q ‖ ŷ. The unmodulated contribution to the

energy can be removed by making measurements at different angles q · ŷ. Measuring the
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change in energy would involve imaging the density profile before and after a time-of-flight

expansion, which has been used to measure the equation of state of Fermi [37] and Bose [38]

gases. They find that their linear response result is valid out to energies of approximately

δEmax(ρ) ≈ 0.1×
(
π

4
w2ρ kBTd

)
(18)

where ρ can be either the normal fluid density or the total density based on the conditions

above and Td = 2π~2ρ/m is the degeneracy temperature. Recall that w2 is roughly the area

of the region on which the vector potential is applied, so there is a clear tradeoff between

locality and a discernible change in energy. It would likely not be possible to distinguish

energies below a percent of kBTd [35], which would constrain the total number of particles

addressed by the field w2ρ ∼ O(10). Of course this result is density-dependent, so it’s

possible one could do better.

The second method for measuring the local current response is through optical imaging.

The authors propose measuring the intensity of the probe laser after it passes through

the sample. In making the adiabatic approximation, we assumed a phenomenon called

electromagnetically-induced transparency (see Appendix A) in which destructive interference

from the symmetric driving of the coupling and probe beams decouples the Raman-dressed

states from the lasers altogether [16, 19, 22]. This will hold true when the atoms are at rest,

and consequently the probe beam is not scattered by the sample. Atomic motion can throw

a wrench in things, however, by introducing a Doppler shift [39]. The resulting asymmetry

seen by the atom leads to a small coupling between the dressed state and the bare excited

state. This coupling naturally means that the atoms have a finite dipole polarization that can

act as a source term to the electric field of the probe laser. The authors show that the change

in light intensity is proportional to the expectation value of the current 〈j(r)〉. Measuring

the intensity of transmitted light for longitudinal and transverse vector potentials therefore

provides a means to measure the superfluid density. As with the previous method, there are

unwanted effects arising from an additional motional coupling to the density gradient and

from the unmodulated component of the vector potential. It is argued that the former can be

ignored because it is orders of magnitude smaller than the contribution of the current, while

the latter would again require angle-resolved measurements to subtract off the unwanted

component. The effect would require measuring fractional changes in the intensity of the

transmitted light that are on the order of 10−7, which would be near the standard quantum
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limit for a gas of O(106) atoms.

This proposal is a clever extension of the ideas developed in previous sections to a non-

equilibrium, local setting. Furthermore, the locality of the measurement method indicates

that similar measurements should (ostensibly) be feasible in any quasi-2D trap geometry,

including on a lattice. With that said, there are two primary caveats. The first is that appli-

cations of this technique to “interesting” systems or to lattice models would either require

extensive calibration or theoretical modeling to determine the range of appropriate param-

eters. For example, it would take a variety of measurements to determine the dependence

on q · ŷ and reasonable values for γ and q in the absence of reliable modeling. The second

caveat is that the authors do not get around the “smallness” problem stated at the outset.

It appears that truly local measurements using this technique would have to be extremely

precise and would therefore likely be quite noisy.

E. Second Sound

Finally, I will present the work of two groups that measured the superfluid fractions of

the unitary Fermi gas [40] and the 2D Bose gas [41], respectively, by measuring the velocities

of first and second sound. This is a method which is experimentally quite robust insofar as

it does not depend on thermal equilibrium during rotation. Its major drawback, however,

is that it requires extensive knowledge of bulk thermodynamic properties. In these cases,

the experimental groups were able to determine these properties using just the temperature

and interaction strength due to prior theoretical modeling. For this reason, this method is

of reasonably limited applicability.

The model of a finite temperature superfluid as consisting of coexisting normal and

superfluid components was proposed by Tisza [42] and Landau [43] and is aptly called

the two-fluid model. This assumption naturally leads to the prediction of two low-energy

sound modes: first sound, which is a propagating compression mode, and second sound,

an isobaric mode where the normal and superfluid components oscillate out of phase [44].

These can be thought of as a propagating density mode and a propagating heat/entropy

mode, respectively. The velocities of these quantities are determined by the solutions to the

quartic equation [41, 45]

c4 − (c̃2
1 + c̃2

2)c2 + c̃2
1c̃

2
2/γ = 0 (19)
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where

c̃2
1 =

1

mnκs
c̃2

2 =
T s̄2ns
mnncV

γ =
κT
κs

(20)

are parameters fixed by the thermodynamic properties of the system. In the above we

identify s̄ as the entropy per particle, κs (κT ) as the adiabatic (thermal) compressibilities,

and cV as the specific heat per particle at constant volume. These are the parameters that

have been determined for the unitary Fermi gas [44] and the 2D Bose gas [46] as functions of

T/TF and T/Tc, respectively. In the case of these experiments, the solutions to the quartic

equation are used to determine the superfluid density ns.

We will assume that these parameters or functions are known, turning to the problem of

how to measure the sound veocities. In Ref. [40], the authors confine a unitary Fermi gas

to a cigar-shaped trap. They excite a first-sound mode by suddenly generating a localized

“bump” in the potential using a tightly-focused laser. They then take images of the density

as a function of time in the elongated direction of the trap to extract the sound velocity.

The second-sound mode is more tricky: they load the gas with the localized bump already

present in the trapping potential and then quickly modulate the power of the laser to drive

the system locally out of equilibrium. The sinusoidal modulation maintains the same average

potential height so that they don’t excite a first sound mode. They then halt the modulation

and allow the system to relax. As the system relaxes, the local temperature and entropy

perturbation propagates outward. They then measure the velocity of the temperature wave

by imaging the density as a function of time, identifying a decrease in the density as a region

of locally-increased temperature. This is a clever and physically-intuitive measurement,

although the results are rather noisy. Their data for the superfluid density as a function of

temperature are shown in Fig. 7 alongside the superfluid density of Helium II (green) and the

Bose-Einstein condensate fraction (red). Horizontal uncertainty arises from the challenge of

determining the temperature of trapped gases in general as well as from finite-size effects,

which can shift Tc by ∼ 10%.

In Ref. [41], the authors study a quasi-2D Bose gas in a box trap: a hollow laser beam

is used to confine the atoms to a box Lx × Ly in the x-y plane, and a tight harmonic

trap confines the atoms in the z direction. As the system is cooled, it is predicted to

undergo a BKT transition into the superfluid phase. This transition is associated with the

condensation of vortices and can be characterized by a discontinuous jump in the superfluid

density [47]. They will choose to plot the superfluid phase space density, Ds = nsλ
2
T where
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FIG. 7. Superfluid fraction versus temperature obtained by measuring the second sound in the

unitary Fermi gas. Also shown are the superfluid fraction of Helium II (green) and the condensate

fraction of a Bose gas (red). Taken from Ref. [40].

λT is the deBroglie wavelength. In these units, the magnitude of the jump is 4 (Ds is

dimensionless). In order to extract the sound velocities, they measure the long-wavelength

density response of the gas to a spatially-uniform, in-plane force Fy(t) = F0 sin(ωt) generated

by a magnetic field gradient. Measuring the out-of-phase oscillations in the center of mass

of the gas then characterizes the absorptive response, which can be related to the dynamical

structure factor, S(ω, qL). The wavelength of the excitations qL = 2π/Ly corresponds to the

longest-available wavelength in the box trap. They can then identify peaks in the dynamical

structure factor as sound modes. They find two peaks in the superfluid phase, ω1,2, resulting

in first and second sound velocities c1,2 = ω1,2/qL. Upon transitioning into the normal phase,

the second sound mode (the lower of the two frequencies) becomes an overdamped diffusive

mode. Inserting their measured sound velocities into the Eq. (19), they are able to extract

the superfluid density. Their data is shown in Fig. 8 where they plot Ds versus D = nλ2
T , the

total phase space density. The solid curve is a theoretical prediction with no free parameters,

and the dotted line corresponds to a superfluid fraction of 1. There is clearly an impressive

agreement, even resolving the jump in the superfluid density across the transition.

As was made clear at the outset of this section, this is a specialized method for computing

the superfluid density. It relies on extensive theoretical modelling which, in these cases, was
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FIG. 8. Plot of the superfluid phase space density versus the total phase space density using values

extracted from measurements of the sound velocities. Theory curve is the result for the infinite 2D

Bose gas with no free parameters and dashed line indicates a superfluid fraction of 1. Taken from

Ref. [41].

simplified by the universality of the systems at hand. While in some cases this could be

substituted for an experimental determination of the equation of state, this would likely

come at the cost of significantly larger error bars and would make the method much more

cumbersome. With that said, introducing a density perturbation and imaging the density

response over time is a comparatively “natural” procedure in cold atom experiments.

IV. FINAL REMARKS

The question of how to compute the superfluid density in ultracold atomic gases is not

necessarily a new question, but it is gaining relevance as experimentalists seek to study

transport properties in finely-tuned “model” systems [48, 49]. These properties, which

include the conductivity, are not necessarily natural observables in the context of cold atoms.

The proposals reviewed above each try to circumvent the technical difficulties involved in

measuring a macroscopic, equilibrium phenomenon in a small, thermally-closed system.

The first three sections review proposals that can be understood as more complicated

variants of Tony Leggett’s thought experiments. The Grimm group’s experiment attempts

to stir the cold gas with a trap deformation, which has the drawbacks of heating the system
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and likely introducing collective modes. Their method of measurement, while clever, may

also introduce vortices; this would be a fatal flaw when measuring the superfluid density. The

method is also limited to strongly-interacting quantum fluids in the hydrodynamic regime,

which could be viewed as a weakness or a strength. The Cooper-Hadzibabic proposal imposes

slow rotation using an artificial gauge field, which should in theory be less disruptive than

a rotating deformation. While the measurement procedure they present is limited to the

ring trap geometry, the spectroscopic method is convenient and has already been used in

another context [23]. It is an open question whether this measurement method would be

feasible in a strongly-interacting system, however, as the requirement that ΩR be greater

than all other energy scales would mean that the magnitude of observables should shrink

proportionately. Equally convenient is the algorithm proposed by Ho and Zhou, which only

requires a snapshot of the column-integrated density. This seems like the most versatile

of the proposed methods of measurement, although the noise associated with inverting the

column-integration is not insignificant [35]. In concert with the experimental procedure set

out in Ref. [17] and realized in Ref. [23], measurement of the superfluid density as a function

of position in a harmonic trap should already be feasible.

We then examined two alternative procedures. The first, a proposal by Carusotto and

Castin, provides a means to measure superfluid density locally via a tightly-confined artificial

vector potential. This has the benefit of not requiring thermal equilibrium, which can be

a significant burden in small closed quantum systems. While the probing techniques are

within reach, precise measurements of the small current response would require very high

sensitivity. For that reason, this method does not yet seem realizable. In the last section,

we reviewed two experiments that extracted the superfluid density from the second sound

velocity. The experimental methods in both cases were natural and broadly-applicable.

The methods of Ref. [41] bear a resemblance to those recently employed to measure the

conductivity of a 2D Fermi-Hubbard system in an optical lattice [50], a demonstration of

their versatility in cold-atom transport problems. The drawbacks of this method, requiring

knowledge of the thermodynamic properties of the system, could be quite severe. With

that said, the methods of Ref. [41] seem particularly valuable given the ability to broadly

characterize the long-wavelength collective modes of the system. Advances in quantum gas

microscopy and model-free thermometry [51] could improve experimental determinations of

the equation of state to make this a viable method for measuring the superfluid density.
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A. Post-Exam Comments

Worth also keeping in mind that one can engineer Peierls phases using artificial vector

potentials, which could be a useful application/proposal in 1D.

Also, in the introduction, it’s useful to distinguish phase stiffness from something like

Cooper pair density. Debanjan pointed out a distinction in superconductors that’s useful to

keep in mind. The phase stiffness, which I generally denote as n/m∗, in a BCS superconduc-

tor is the delta function weight in σ(ω). The function σ(ω) for a superconductor has a gap

of 2∆ (with a factor of 2 because it’s a 2-particle response function) and a delta function

peak at ω = 0. This latter feature is what distinguishes superconductors from insulators.

The weight of the delta function is the phase stiffness, which is proportional to the square

of the penetration depth (in BCS theory). I admit I’m a little lost on where he was going

with this. The superfluid density ns/m
∗ is defined similarly, and one ought to be careful to

argue that it does not correspond to the Cooper pair density. That much is clear. He then

claimed that the phase stiffness, which is related to SF density, is independent of the gap ∆

at zero temperature. Whether this is what he meant is unclear, as the phase stiffness could

be related to the rest of the conductivity through a sum rule, which might naively suggest

that there would be a gap dependence. I’m not sure if he meant Cooper pair density instead.

Appendix A: Electromagnetically-Induced Transparency

Here I’ll make some very brief comments on the phenomenon of electromagnetically-

induced transparency, largely taken from Ref. [22]. This is relevant for the Cooper-

Hadzibabic (Sec. III A) and Carusotto-Castin (Sec. III D) proposals.

Consider a gas of atoms with two hyperfine “ground state” levels, |g〉 and |s〉, which differ

in energy of order the Zeeman splitting, and an excited state level, |e〉. This is a simplified

version of the schemes used in the above proposals and is shown schematically in Fig. 9.

Generically if one shines coherent laser light on the cloud of atoms with a frequency ~Ωsignal =

Ee−Eg, the light will be absorbed as it drives transitions between |g〉 and |e〉. The medium

would therefore be opaque, as this process will lead to the absorbed light being scattered

as the excited state decays. If one were to also shine a laser on the system with frequency

~Ωcontrol = Ee − Es, one might expect things to get even more complicated. Interestingly,

24



FIG. 9. Plot of the three-level system being considered here with symmetric driving of two distinct

hyperfine ground states into the same excited state. Taken from Ref. [22].

however, one instead finds that such a procedure leads to destructive interference in the

transitions between the respective ground states and the excited state. More concretely, one

can write down the Hamiltonian for this three-level system with the two coherent drives and

find that there is an eigenstate that is completely decoupled from the excited state. This

eigenstate, a linear combination of the hyperfine ground states, is known as a dark state.

As the excited state will decay with a shorter lifetime than the ground states, continuously

driving the system will pump the system into the dark state. When the system is in the

dark state, it is no longer scattering the laser light – thus, we have the phenomenon of

electromagnetically-induced transparency.

We make use of similar schemes when considering the use of artificial vector potentials.

The general idea is that we drive the system symmetrically, as shown here, and the low-

energy features of the resulting model will not involve the excited state at all. One can

then ignore the excited state and consider the truncated Hilbert space that just involves

the ground state hyperfine levels. This is, of course, only valid for coherent drives that are

adequately symmetric and close to the resonance. The assumption that all the relevant

dynamics occur within this “transparency window” is what we refer to as the adiabatic
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approximation [22].
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