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I. INTRODUCTION

Fermi liquids are at once ubiquitous and intellectually rich phases of matter. The char-

acterizing feature of a Fermi liquid is a Fermi surface: a surface in momentum space about

which there are gapless excitations. The presence of a Fermi surface is trivial in the non-

interacting Fermi gas. In interacting systems, however, it instead emerges as a feature of

the low-energy effective model [1].

In this paper the authors ask whether one could realize a bosonic system with gapless

excitations on a surface in momentum space – essentially a bosonic analog of the Fermi liquid.

There are obvious complications right off the bat, namely how such a system would realize

such a surface without degeneracy pressure. Indeed, that this is not a ubiquitous phase

of matter is clearly why it has not received attention earlier. We will put that question

off, however, and seek to answer a more basic question: given a dispersion that realizes

such a manifold, does the low-energy gapless theory survive in the presence of interactions?

Moreover, in the case that it does, what are the properties of such a phase? Specifically, in

what respects does it differ from a Fermi liquid? We’ll then address potential avenues for

realization at the end.

I’ll start by giving some version of the punchline, which will really just serve as a roadmap

for the technical details. We will find that the phase is stable in a particular parameter

regime, and therefore it can be realized in principle. The regime in which it is stable is one

in which the low-energy excitations have no overlap with the single-particle operators, i.e. the

system is not analogous to a Fermi liquid when it comes to the existence of quasiparticles.

Nevertheless, the phase is compressible and metallic. There is no analogy to Luttinger’s

theorem [2–4] which relates the volume of the Fermi surface to the total density. This

should be evident from the fact that the Bose surface arises from the UV dispersion, and

is therefore “artificial”. Importantly, however, the relation between the Fermi surface and

the density also implies a relation between the charge and momentum densities in a Fermi

liquid (namely, they’re related by the Fermi velocity). The lack of such a relationship in

the bosonic system leads to a decoupling of the charge and momentum densities, which is

another way of recognizing the absence of quasiparticles.
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II. THE FIXED POINT

We’ll now proceed to derive the 2D model. For the majority of this discussion we’ll

consider a Lagrangian that is invariant under the following transformations:

• U(1) charge conservation: ψ(x)→ e−iαψ(x)

• Translation invariance: ψ(x)→ ψ(x+ µ)

• Particle-hole symmetry: ψ(x)→ ψ∗(x)

As alluded to in the above, the UV bosons are represented by a complex scalar field, ψ(x).

The last symmetry is worth commenting on: particle-hole symmetry enforces that the av-

erage density is equal to zero. This seems like a strange choice to make, and indeed later

we’ll be prompted to think about the extension to finite density. For now, however, this is

a useful simplifying assumption. The UV Lagrangian is given by

L = ψ∗
(
− u−1∂2

τ −
u

4k2
B

(−∇2 − k2
B)2 + r

)
ψ +

g

4
|ψ|4. (1)

Note the absence of a ∂τ term is due to particle-hole symmetry. It is evident that the kinetic

term is minimized along a circle in momentum space of radius kB. This will be referred

to as the Bose surface. The interactions are parameterized by g, which we assume to be

small, and the parameter r < 0 is chosen so that the amplitude of the field φ will acquire a

finite expectation value (this is analogous to a negative mass in φ4 theory). It’s also worth

mentioning that the Lagrangian is written in imaginary time, τ = −it. We will work in

imaginary time coordinates for most of this paper.

What we’ll proceed to do is expand about the Bose surface. From a technical standpoint,

it is useful to break the Bose surface up into discretized square patches of linear dimension

2Λ, as shown in Fig. 1. The parameter Λ is the IR cutoff, which we will vary in order

to determine the renormalization group eigenvalues of the couplings. The patch procedure

was originally introduced by Haldane [6] in order to bosonize a Fermi surface in dimensions

greater than 1. The square dimensions are, of course, approximations that are only useful

when the number of patches, N = 2πkB
2Λ

, is large (otherwise one should be concerned about

overlap). Within this framework we can expand the UV boson field ψ about each patch

individually,

ψ(x) =
1√
N

∑
γ

eikB γ̂·xψγ(x), (2)
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FIG. 1. Patch decomposition of the Bose surface, taken from Ref. [5]. Note the definition of γ̂ as

pointing radially outward.

thereby defining patch fields ψγ(x) whose momenta are presumed to be small in comparison

to the magnitude of the Bose momentum, kB. The discretization procedure is useful because

it is clean and easy to understand; the downside is that the patches themselves are not

physical, which we will have to deal with at various points. In particular, we do not want

any physical quantities to depend on N , just like they shouldn’t depend on the IR cutoff, Λ.

What we’ll now find is that, upon expanding the free part of the Lagrangian, the patch

boson fields are “quasi-1D”: to leading order, the dispersion only depends on the component

of the momentum pointing radially outward from the Bose surface. Consider the kinetic term

acting on a single patch field, ψγ, where we’ll define k‖ to be the component of the momentum

of ψγ that is parallel to γ̂ and k⊥ to be the perpendicular component. Expanding, one finds

(
e−ikBγ·xψ∗γ(x)

)( 1

4k2
B

(−∇2 − k2
B)2

)(
eikBγ·xψγ(x)

)
→ 1

4k2
B

(k2
‖ + k2

⊥ + 2kBk‖)
2ψ∗γ(k)ψγ(k)

∼ k2
‖ ψ

∗
γ(k)ψγ(k).

(3)

The first line is just writing out all the terms in Fourier coordinates, and then the second line

discards all terms of order O(k‖/kB, k⊥/kB). One of our assumptions is that the momenta of

the patch fields ψγ are bounded by Λ� kB, so this limit is appropriate to take. Conceptually

this should be thought of as linearizing about the Bose surface. We are not discarding the

4



curvature of the surface altogether, though: it plays a role in decreasing the phase space for

scattering, as in a Fermi liquid, and its effects show up in long-distance correlation functions

(x ∼ kB/Λ
2) and in the collective modes. As the renormalization group analysis will only

require evaluating correlation functions at zero spacetime separation, however, we will make

use of the linearized dispersion. It has been shown in analyses of bosonized Fermi liquids

that this is sufficient to derive a variety of properties [7, 8].

With this in mind, we find that the linearized Lagrangian is diagonal in the patch fields

and takes the form L+ LI where

L =
1

N

∑
γ

ψ∗γ(−u−1∂2
τ − u∇2

γ + r)ψγ (4)

and we define ∇γ = γ̂ · ∇. As stated above, the curvature of the Bose surface restricts

scattering processes to be in the forward scattering and BCS channels [1]. Thus LI has two

contributions:

LFS =
1

N2

∑
γ,γ′

ψ∗γψγgFS(γ − γ′)ψ∗γ′ψγ′ (5)

LBCS =
1

N2

∑
γ,γ′

ψ∗γψ
∗
γ+πgBCS(γ − γ′)ψγ′ψγ′+π. (6)

The couplings themselves should be rotationally symmetric and therefore depend only on

the angular separation between the patches.

The next stage of analysis involves decomposing the fields into an amplitude and a phase.

The reason we do this is that density-density interactions are relevant in 1D, so the diagonal

components of LFS (along with our quasi-1D dispersion) should tell us that we need a new

representation. The amplitude-phase decomposition is the natural choice [9]. We therefore

take ψγ = (r0 + rγ)e
−iφγ where r0 is a constant corresponding to the average value of the

amplitude. The fields rγ and φγ correspond to fluctuations in the amplitude and the phase,

respectively. An important assumption that we will carry forward is that 〈r0 + rγ〉 is finite

and independent of γ. This is another useful simplifying feature, although we will see in

Sec. III that this does not have to be the case.

We now imagine that we have integrated out all momentum modes outside of the annulus

of width Λ about the Bose surface. The IR limit will be defined on length scales longer than

the inverse mass of the field rγ, which by a classical expansion is easily shown to be
√
−2r

in terms of the UV Lagrangian. Within this limit, following the general approach originally
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set forth by Haldane [10], we define a field θγ that is dual to the φγ fields and satisfies

[φγ(x),∇γ′θγ′(y)] = 2πi
N

kB
δγ,γ′δ

(2)(x− y) (7)

in this long-wavelength limit. We can identify the amplitude of the ψγ fields as
√
ρ0 + kB

2π
∇γθγ,

thereby relating rγ to ∇γθγ. These fields transform under the the UV symmetries as follows:

U(1): φγ(x)→ φ(x) + α θγ(x)→ θγ(x)

Translation invariance: φ(x)→ φ(x+ µ) + kBγ̂ · µ θγ(x)→ θγ(x+ µ)

Particle-hole: φγ(x)→ φγ+π(x) θγ(x)→ θγ+π(x)

Note that the φγ field picks up the factor from eikB γ̂·(µ+x) under translation. The θγ field,

which can be interpreted as the integrated density, does not transform under translation

because the average density is equal to zero.

Now we expand the free Lagrangian defined in Eq. 4 to quadratic order in the spatial

and temporal derivatives of these fields. We will work primarily in a representation of the

Lagrangian in terms of only the φγ fields, which is obtained by integrating out the θγ fields.

We’re able to do this because the action is quadratic in both the φγ and θγ fields, allowing

us to switch between representations (for more on this see Sec. C). As alluded to earlier,

this paper concerns itself solely with the form of the resulting IR Lagrangian and not with

the specific relationship between the microscopic (UV) couplings and the IR theory. It is,

however, useful to consider how one might go about doing this. The IR Lagrangian takes

the form L = L0 + Lf + LI , where

L0 =
kB

4πNη

∑
γ

(
v−1(∂τφγ)

2 + v(∇γφγ)
2
)

(8)

Lf =
kB

4πN2η

∑
γ,γ′

(
v−1fγ,γ

′

ρ (∂τφγ)(∂τφγ′) + vfγ,γ
′

j (∇γφγ)(∇γ′φγ′)
)
. (9)

These are the terms that couple the charge densities (∂τφγ) and the current densities (∇γφγ),

respectively. The Lagrangian L0 comes from the free part of the patch Lagrangian, Eq. (4),

and Lf comes from the forward scattering interactions LFS [11]. These free Lagrangians

define quasi-1D Luttinger liquids with sound velocity v and the Luttinger parameter is η that

live on each patch of the Bose surface. The Lagrangian Lf couples the charge and current

densities on different patches, where we can interpret the couplings as Landau parameters

(in a bosonized Fermi liquid theory, these would indeed be the Landau parameters [7, 8]).
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Rotational symmetry dictates that they depend only on γ − γ′. These equations define the

Bose-Luttinger Liquid (BLL) fixed point. Terms appearing in LI are interactions that do

not simply renormalize the existing phenomenological parameters, but which would induce

some form of symmetry breaking towards a different state. We will discuss this in Sec. III.

At this stage, it is useful to consider the difference between this fixed point and the

bosonized Fermi liquid fixed point. The first thing to note is that the parameter η is fixed to

be equal to 1 in a Fermi liquid, and we will find that setting η = 1 in a BLL recovers a variety

of canonical Fermi liquid results. The reason for this discrepancy is that quasiparticles are

responsible for both the charge and momentum density in a Fermi liquid, and that is not the

case in the BLL. To see this, it can be instructive to write the Lagrangian L0 in Hamiltonian

form:

H0 =
v

4πN

∑
γ

(
η(∇γθγ)

2 +
1

η
(∇γφγ)

2

)
. (10)

Here one can consider the separate propagation of density (∇γθγ) and current (∇γφγ) fluc-

tuations, with respective velocities vη and v/η. The condition that η = 1 means that these

fluctuations propagate at identical speeds, which is related to the fact that the momentum

and charge densities are coupled in the Fermi liquid: the low-energy excitations, quasiparti-

cles, are responsible for the propagation of both. One can also compare to the standard 1D

Luttinger liquid theory results to find that η = 1 corresponds to the free Fermi gas in 1D,

while η 6= 1 corresponds to a generic interacting Luttinger liquid without quasiparticles [9].

We can therefore think of η = 1 in the low-energy theory as indicating that it is adiabat-

ically connected to the free Fermi gas. A related point of difference between the BLL and

the Fermi liquid is that there are actually two sets of Landau parameters in the BLL, fρ and

fj, which couple the charge and momentum densities (respectively) on different patches. In

a Fermi liquid one would find fρ = fj for the same reason stated above. This means that

there are two zero sound modes in the BLL where (in a spinless Fermi liquid) there would

otherwise be one. We will see this in Sec. IV.

III. SYMMETRY AND STABILITY

In order to discuss the stability of this fixed point, we first have to discuss the emergent

symmetry group that it realizes. Perturbations to the fixed point should break this sym-

metry, otherwise they will simply renormalize the existing couplings. Looking at Eq. (8) in
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isolation, one might think that action would be invariant under φγ(x)→ φγ(x) + fγ(γ̂⊥ · x),

whereby each patch phase field is shifted by a function that can depend on the perpendicular

direction in real space. As noted earlier, however, Eq. (8) is uses a linearized dispersion that

does not include the curvature of the Bose surface. While we are ignoring these terms in a

perturbative sense, they are not formally zero and therefore this is not the correct symmetry

group. This means that the transformation cannot be a function of position, so one might

propose φγ(x) → φγ(x) + fγ where fγ can differ from patch to patch. In the low-energy

N → ∞ limit, this would realize a U(1)∞ symmetry group whereby charge is conserved

at each point on the Bose surface. This, as well, is too large of a symmetry group. Take

the Fermi liquid as an example: while a non-interacting Fermi gas in the thermodynamic

limit explicitly realizes U(1)∞ in the UV, it is only approximately realized in the interacting

Fermi liquid. Similarly, the BLL appears to approximately realize the U(1)∞ group, but

the only U(1) conserved density is the microscopic U(1). To this end, the authors claim

that the correct symmetry group is the loop group, LU(1), which corresponds to the set of

transformations φγ(x) → φγ(x) + fs(γ) where fs(γ) is a smooth function of γ. It is worth

underlining the conceptual point – what the authors are doing is defining a symmetry group

that will be well-behaved we increase the number of patches on the Bose surface. The idea

is that, despite the usefulness of the patch decomposition, at the end of the day we should

be able to conceptually mend these patch fields back into a single low-energy field. Trans-

formations allowed under the U(1)∞ would make for patch configurations that are singular

(e.g. discontinuous) functions of γ, which are therefore not physical.

Given this, we can now discuss allowed perturbations to the fixed point. The authors

claim that the most relevant perturbation is the BCS pairing interaction,

1

N2

∑
γ,γ′

gBCS(γ − γ′) cos(φγ + φγ+π − φγ′ − φγ′+π). (11)

This is a reasonable perturbation as it is invariant with respect to all the UV symmetries

yet it breaks the emergent LU(1) symmetry down into a subgroup of functions f̃s(γ) that

obey f̃s(γ) = −f̃s(γ + π). That it is the “most relevant” will only be meaningful after the

renormalization group analysis. Before proceeding, however, they note that one might also

think to construct terms that are proportional to cos(θγ), which is a common perturbation

to Luttinger liquids (see Appendix E of Ref. [9]). The authors argue, however, that this

is not a legal perturbation to the system because the vertex operator eiθγ , by virtue of the

8



commutation relations in Eq. (7), creates a vortex in the associated patch field φγ. Having a

vortex on one patch field φγ and not on an adjacent patch field φγ′ is a singular configuration,

as one cannot pass smoothly between field configurations of different vorticity. For the same

reason that the emergent symmetry group is LU(1) instead of U(1)∞, then, the operators

eiθγ are not legal perturbations to the BLL fixed point.

The first thing we have to do for the RG analysis is compute some correlation functions.

The correlation function between φγ fields is trivial if we consider just the Lagrangian L0,

ignoring the Landau parameters:

Gγγ′

φ (k, ω) = 〈φγ(k, ω)φγ′(−k, ω)〉 = δγγ′
2πvηlΛ
ω2 + v2k2

γ

. (12)

As shown in Appendix A, including the Landau parameters gives a correction of order

O(1/N). We can therefore safely ignore their contribution to the φφ correlation function in

the IR limit, as we will be taking Λ→ 0 and N →∞.

Now let’s compute the correlator of the vertex operators, 〈eiφγ(x)e−iφγ′ (0)〉. The first thing

to do is rearrange these a bit. We’ll make use of the fact that 〈eiX̂〉 = e−〈X̂
2〉/2 for an operator

with 〈X̂〉 = 0:

〈eiφγ(x)e−iφγ′ (0)〉 = 〈ei(φγ(x)−φγ′ (0))〉

= exp

(
− 1

2
〈
(
φγ(x)− φγ′(0)

)2〉
)
.

(13)

The argument in the exponential is now given by

2πηvlΛ

∫
d2kdω

(2π)3

δγ,γ′e
i(k·x+ωτ) − 1

ω2 + v2k2
γ

(14)

where we use the result from Eq. (12). The bounds on the momentum integral are [−Λ,Λ]2

and the frequency integral is over (−∞,∞). We’ll find that the integral over k‖ is formally

infinite, so we’ll have to add a small-momentum cutoff 1/L which can be interpreted as

imposing a finite system size. Of course, we will only consider results that are finite as

L→∞. Performing the frequency integral, we are left with∫
d2kdω

(2π)3

ei(k·x+ωτ) − 1

ω2 + v2k2
γ

=
1

v

∫ Λ

−Λ

dk⊥
2π

(
eik⊥x⊥

(∫ Λ

1/L

dk‖
2π

1

k‖
eik‖x‖−|kvτ |

)
−
(∫ Λ

1/L

dk‖
2π

1

k‖

))
.

(15)

The second integral inside the parentheses clearly just gives ln(ΛL). In order to simplify

things a bit, we add and subtract 1 from the first integrand. This is because the integral
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over the exponential minus 1 actually converges without the system size cutoff 1/L, which

makes things better-behaved as we take L→∞:∫ Λ

1/L

dk‖
2π

1

k‖
eik‖x‖−|kvτ | ≈

∫ Λ

0

dk‖
2π

1

k‖

(
eik‖x‖−|kvτ | − 1

)
+

∫ Λ

1/L

dk‖
2π

1

k‖

= − 1

2π

(
ln(Λ

√
x2
‖ + (v|τ |+ 1/Λ)2)− ln(ΛL)

)
= − 1

2π
ln

(
1

L

√
x2
‖ + (v|τ |+ 1/Λ)2

) (16)

We therefore have∫
d2kdω

(2π)3

ei(k·x+ωτ) − 1

ω2 + v2k2
γ

= − 1

2πv

∫ Λ

−Λ

dk⊥
2π

(
ln

(
1

L

√
x2
‖ + (v|τ |+ 1/Λ)2

)
eik⊥x⊥ + ln(ΛL)

)
.

(17)

As the authors point out, it’s worth considering the limits of this integral prior to expo-

nentiating it. If we have that x⊥Λ� 1 then the complex exponential will be approximately

1 for the entire range of integration and the integral over k⊥ just gives a factor of l−1
Λ (de-

fined earlier). If x⊥Λ� 1, then the integral over the complex exponential becomes a delta

function δ(x⊥). As the condition x⊥Λ� 1 implies x⊥ is finite, this means the integral over

the first term gives zero and the result is proportional to ln(ΛL). Thus, when we remove the

system size dependence by taking L → ∞ at the end, we would find that the integral goes

to −∞, and therefore that the vertex correlator vanishes. With this in mind, the authors

propose a simplified form for the vertex correlator:

〈eiφγ(x)e−iφγ(0)〉 ∼ δγ,γ′δΛ(x⊥) exp

(
− η ln(Λ

√
x2
‖ + (v|τ |+ 1/Λ)2)

)
=

δγ,γ′δΛ(x⊥)

((Λγ̂ · x)2 + (1 + Λv|τ |)2)η/2

(18)

where the function δΛ is defined as

δΛ(x) =

1 |x| ≤ Λ−1

0 |x| > Λ−1

. (19)

We can now proceed with the renormalization group analysis. First let’s define the rules

of the game, as they are slightly different than the conventional approach [1]. We will

integrate out modes within the annulus sΛ ≤
√
k2
γ + ω2/v2 ≤ Λ where s is a parameter

slightly less than 1. This involves only two of the three spacetime dimensions, which is

intentional because the free action S0 does not depend on k⊥. As a result, our patches will
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no longer be squares in momentum space after mode elimination. Thus our next step is to

increase the number of patches N → N ′ = N/s so that they are now square with dimension

sΛ×sΛ. When changing the IR cutoff, we want to be sure that we’re not changing anything

about the UV theory. That is to say, the UV boson field ψ(x) should not rescale under the

renormalization group. As the number of patches changes, then, this implies that the patch

fields will rescale as follows:

ψ(x) =
1√
N

∑
γ

eikB γ̂·xψγ(x) =
1√
sN ′

∑
γ′

eikB γ̂
′·x(√sψ′γ′(x)

)
(20)

where the primed quantities are those obtained after the patch rescaling. Now let’s consider

the BCS pairing term in the language of these patch fields:

LBCS =
1

N2

∑
γ,γ′

ψ∗γψ
∗
γ+πgBCS(γ − γ′)ψγ′ψγ′+π. (21)

We can see immediately that the rescaling of the patch fields will cancel out with the rescaling

of N . We can therefore ignore the rescaling of N when considering the representation in

terms of the φγ and θγ fields (which will not rescale).

Consider that the action is generically of the form S =
∫
d3r L where I take d3r = d2xdτ .

When computing the scaling dimension of some interaction under RG, one usually compares

the value to the number of spacetime dimensions. For example, in 2 + 1D one might find

that the scaling dimension of an operator is given by the parameter χ, and therefore the

relevance or irrelevance of the operator under RG is determined by seeing whether −3 + χ

is positive or negative. The negative sign comes from the fact that a uniform rescaling of

spatial dimensions takes us from d3r → s−3d3r′. The reason for being so explicit about this

is that, although we are in 2 + 1 spacetime dimensions, only two of those dimensions are

being rescaled under mode elimination. The remaining dimension, along γ̂⊥, is also rescaled

but that rescaling is compensated by a proportionate increase in the number of patches. We

will therefore compare the scaling dimension of the operator to −2 as opposed to −3, which

reflects the fact that the free Lagrangian L0 is effectively 1 + 1-dimensional [12].

With that out of the way, let’s get to the mode elimination. We are now working with

the IR fixed point, Eq. (8), and the perturbation defined in Eq. (11). As L0 is diagonal in

Fourier space, we can define φγ = φ>γ + φ<γ where the former have momenta and frequencies

in the annulus defined above. These are the fast modes that we will integrate out. The

procedure will be to compute effective contributions to the action, obtained by expanding
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the path integral and then re-exponentiating. It is convenient to represent both operations

in the form of a cumulant expansion, which gives an expression for the effective action after

renormalization:

Seff [φ
<] ≈ S0[φ<] + 〈δS[φ< + φ>]〉> +

1

2

(
〈δS[φ< + φ>]2〉> − 〈δS[φ< + φ>]〉2>

)
+ . . . . (22)

The term S0[φ<] is just the free action after removing the φ> modes, which requires no

averaging. Notationally, 〈. . .〉> means averaging over the fast modes. The term δS is the

contribution of the BCS pairing term to the action,

δS[φ] =
1

N2

∑
γ,γ′

gBCS(γ − γ′)
∫
d3r cos

(
φγ
(
r) + φγ+π(r)− φγ′(r)− φγ′+π(r)

)
. (23)

The tree-level RG exponent is obtained by computing the second term in Eq. (22). To do

this, we expand the cosine (I use the quantity ϕγ,γ′(r) to represent the sum of all terms

inside the cosine):

δS[φ< + φ>] =
1

2N2

∑
γ,γ′

gBCS(γ − γ′)
∫
d3r

(
eiϕγ,γ′ (r) + e−iϕγ,γ′ (r)

)
=

1

2N2

∑
γ,γ′

gBCS(γ − γ′)
∫
d3r

(
e
iϕ>
γ,γ′ (r)e

iϕ<
γ,γ′ (r) + e

−iϕ>
γ,γ′ (r)e

−iϕ<
γ,γ′ (r)

)
.

(24)

This latter step is legal because the Lagrangian is diagonal in Fourier space, so all these terms

commute. Now we integrate out the φ> fields, which amounts to taking the expectation value

of the expression in parentheses with respect to these fields (i.e. using the action e−S
>
0 ). This

gives us the expectation value of the vertex operator. We then use the identity from earlier

to obtain

〈δS[φ< + φ>]〉> =
1

N2

∑
γ,γ′

gBCS(γ − γ′)
∫
d3r cos(ϕ<γ,γ′(r))e

− 1
2
〈(ϕ>

γ,γ′ (r))
2〉
. (25)

The expectation value in question is straightforward. The expectation value of two φγ

fields on different patches is zero, so we’re left with 〈(ϕ>γ,γ′(r))2〉 = 4〈(φ>γ (r))2〉. The latter

expectation value is

〈(φ>γ (r))2〉 =

∫ Λ

sΛ

dω dk‖
(2π)2

∫ Λ

−Λ

dk⊥
2π

2πηvlΛ
ω2 + v2k2

‖

= 2πη

∫ Λ

sΛ

dq

(2π)2|q|

∫ π

−π
dθ

= −η ln(s)

(26)
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The integration bounds on the dω dk‖ integral mean that we’re integrating the annulus

defined earlier. In the second line I switch to polar coordinates, absorbing a factor of v.

The integration of momenta in the perpendicular direction is trivial, giving a factor of l−1
Λ .

We don’t change the bounds on that integral to ±sΛ because the equivalent operation is

accomplished by reparameterizing the patches to be squares (which, it is assumed, we do

after mode elimination). Inserting this result into the above expression, we find

〈δS[φ< + φ>]〉> = s2η 1

N2

∑
γ,γ′

gBCS(γ − γ′)
∫
d3r cos(ϕ<γ,γ′(r)). (27)

Now we can determine the tree-level scaling of the parameter gBCS. Again, note that from

a simple rescaling of the spacetime dimensions (xγ → xγ/s, ω → ω/s), which is necessary

to ensure that the integrals run over the same values after mode elimination, we pick up a

factor of s−2. We therefore find

δSeff ∼ s2η−2 1

N2

∑
γ,γ′

gBCS(γ − γ′)
∫
d3r′ cos(ϕ<γ,γ′(r

′)). (28)

This, of course, looks just like the definition of δS in the first place except without any of

the fast modes and multiplied by an overall factor of s2η−2. Replacing s = e−t where t is

referred to (in this paper) as the RG time, we define a new coupling gBCS(t, γ) that depends

on the parameter t. We are interested in the limit t→∞, which would correspond to taking

Λ→ 0. We find

gBCS(t, γ) = gBCS(0, γ)e(2−2η)t =⇒ dgBCS

dt
= (2− 2η)gBCS (29)

From this we can immediately read off the RG eigenvalue, 2−2η. As t→∞, the sign of this

eigenvalue determines whether the perturbation will increase or decrease. If it decreases, then

there is a low-energy scale at which it can be ignored altogether – it is formally “irrelevant”.

Thus, for η > 1, the RG eigenvalue is negative and the Bose-Luttinger liquid is stable to

the BCS pairing interaction. We can also see now that additional symmetry-breaking cosine

terms, which would have to contain the sum of more than four φγ fields, would be less

relevant than the BCS pairing term.

It is now worth refocusing attention on the fact that, for a Fermi liquid, analogous

bosonization schemes yield η = 1. Thus one would find that the BCS coupling is marginal

at tree level [1]. This is not strictly true for the BLL as η is not fixed. If it were the case
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that η = 1, however, one must continue the calculation to one-loop order to determine how

it rescales under RG. We perform this calculation in Appendix B, finding the familiar result

dglBCS

dt
= (2− 2η)glBCS − C(glBCS)2 (30)

where C > 0 is a constant and we decomposed the angular dependence of gBCS(γ) into

harmonics,

glBCS =

∫
dγ cos(γl)gBCS(γ). (31)

Due to Bose symmetry we must have gBCS(γ) = gBCS(γ + π), which implies that l ∈ 2Z.

In the case that η = 1, like the Fermi liquid, we would therefore find that the sign

of glBCS determines its relevance: positive couplings are marginally irrelevant and negative

couplings are marginally relevant. In the case that the BCS coupling is marginally relevant,

the harmonic gl
∗

BCS that is most negative will determine the resulting spontaneous symmetry

breaking. If we define φ±γ = φγ ± φγ+π, the authors claim that 〈φ+
γ 〉 would acquire a finite

expectation value. This comes from the fact that the BCS pairing perturbation breaks down

the LU(1) symmetry group into a subgroup of transformations characterized by smooth

functions that obey f̃s(γ) = −f̃s(γ + π). This will result in pairing between φγ and φγ+π,

analogous to the BCS pairing leading to superconductivity. The pairing occurs in the φ+
γ

channel because it is invariant under these transformations. As φ−γ is not, it will not be

gapped out by pairing interactions [13]. The resulting state should still have a Bose surface

that is described in the IR by the φ−γ fields. Formally this would be equivalent to a BLL

where the UV bosons were represented by real scalar fields. As such, there would be no U(1)

charge conservation (which must be the case, as φ−γ is not charged under the microscopic

U(1)) and the real bosonic fields would obey Φγ(x)∗ = Φγ+π(x). The authors demonstrate

that the low-energy theory for a real bosonic system takes the same form as the one for the

complex bosonic theory and is stable for η > 4/3.

IV. PHENOMENOLOGY

Let’s now dive into the features of the fixed point, where we’ll be able to make a closer

comparison to the 2D Fermi liquid. The first thing we’ll look at is the specific heat. In the

absence of Landau parameters we have N independent, decoupled Luttinger liquids. Each

Luttinger liquid Hamiltonian is diagonalized in a basis of massless bosons with dispersion
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ω = vkγ. Consider one such patch. The low-energy Hamiltonian is of the form

Hγ = v
1

Nk

∑
kγ

|kγ|a†kγakγ → v

∫ ∞
−∞

dkγ
2π
|kγ|a†kγakγ (32)

where akγ are bosons on patch γ and we took the continuum limit. The specific heat of this

system is given by C = ∂〈Hγ〉/∂T . We can easily write the expectation value at fixed T

using 〈nk〉 = nB(T ) where nB is the Bose-Einstein distribution function. We find

〈Hγ〉 =
v

2π

∫ ∞
−∞

|k|dk
eβv|k| − 1

=
T 2

πv

∫ ∞
0

x

ex − 1
=
T 2

πv
ξ(2) (33)

where ξ is the Riemann-Zeta function and ξ(2) = π2/6. The specific heat due to a single

patch is therefore

C1D =
∂〈Hγ〉
∂T

=
πT

3v
. (34)

Given this fact, we should interpret the 1D specific heat as a specific heat density in 2D. In

order to find the specific heat, we should also integrate along the transverse direction (along

the circumference of the Bose surface) in momentum space. As the patches are decoupled,

the integral is trivial:

C2D =

∫
BS

dk⊥
2π

C1D = C1D
2πkB

2π
=
πTkB

3v
. (35)

This should be compared to the specific heat of the Fermi liquid, C = π2

2
n(T/TF ) – the

results are parametrically equivalent. Note in both expressions I set Boltzmann’s constant

equal to 1 (not to be confused with the Bose momentum kB).

Next we consider compressibility. In terms of the density-density correlation function,

χρ(k, ω), we have that the compressibility κ is given by κ = χρ(k = 0, ω → 0). Density fluc-

tuations are defined in terms of ∂τφγ in L0 (rather than ∇γθγ, as would be conventional in a

Hamiltonian formulation). The leading-order contribution to the density-density correlation

function is

χρ(k, ω) = 2

(
kB

4πNηv

)2∑
γ,γ′

ω2〈φγ(k, ω), φγ′(−k, ω)〉. (36)

Here the Landau parameters will make an O(1) contribution, so we’ll want to keep them

in. For the purpose of this density-density correlation function, however, we only have

to consider the zeroth Fourier mode of the Landau parameter f
(0)
ρ . This is because the

parameter fj(γ − γ′) does not contribute to the φφ correlation function at k = 0 and χρ is
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proportional to
1

N2

∑
γ,γ′

〈φγ(k, ω), φγ′(−k, ω)〉 = 〈φ0(k, ω)φ0(−k, ω)〉 (37)

where φ0 =
∫

dγ
2π
φγ is the zeroth Fourier mode. This makes physical sense because this is

the only conserved density in the problem, as discussed in the stability section. Making use

of the correlation function computed in Appendix A,

∑
γ,γ′

〈φγ(k, ω), φγ′(−k, ω)〉 =

2πvηlΛ
∑
γ,γ′

(
δγ,γ′

ω2 + v2k2
γ

− 1

N

1

(ω2 + v2k2
γ)(ω

2 + v2k2
γ′)

ω2f
(0)
ρ

1 + f
(0)
ρ |ω|/

√
ω2 + v2k2

)
. (38)

Now (after evaluating that Kronecker delta function) we take the sums to integrals, restoring

some factors of N :

→ 2πvηlΛN

∫
dγ

2π

(
1

ω2 + v2k2
γ

−
∫
dγ′

2π

1

(ω2 + v2k2
γ)(ω

2 + v2k2
γ′)

ω2f
(0)
ρ

1 + f
(0)
ρ |ω|/

√
ω2 + v2k2

)
.

(39)

Given that we’re only interested in the k = 0 value of the correlator, it will save us a lot of

trouble to just set kγ = 0 throughout. Both integrals are then trivial, giving us

∑
γ,γ′

〈φγ(0, ω), φγ′(0, ω)〉 =
2πvηlΛN

ω2

(
1− f

(0)
ρ

1 + f
(0)
ρ

)
. (40)

Collecting terms, we find

χρρ(0, ω) = 4πvηlΛN

(
kB

4πNηv

)2(
1− f

(0)
ρ

1 + f
(0)
ρ

)
=

kB
4πηv

(
1

1 + f
(0)
ρ

)
, (41)

where in the last equality we used the fact that lΛ = N/kB. There is of course no need to

take the ω → 0 limit obtain κ. Compare this result to the Fermi liquid result, κ = 1
n
N(0)

1+FS0
,

and we can see that the effect of the Landau parameters is the same.

Now let’s work out the dispersion of the zero sound modes. As stated in the Introduction,

charge and momentum are carried by separate fields. This means we’ll have two collective

modes to work out – one for the φγ fields and one for the θγ fields. We’ll find that these

are related to the two independent Landau parameters. Here we’ll make an assumption

that the Landau parameters take constant values – in principle it would be possible to get
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contributions from higher angular momentum modes if we do not assume this. Then we

have the Lagrangian

L =
kB

4πNη

∑
γγ′

φγ

(
v−1ω2

(
δγγ′ +

1

N
fρ
)
− vkγkγ′

(
δγγ′ +

1

N
fj
))
φγ′ . (42)

Note that, contrary to what we’ve done up until now, we’re working with real frequencies.

We can derive the equation of motion for φγ by requiring that δL/δφγ = 0:

0 = (ω2 − v2k2
γ)φγ +

1

N

∑
γ′

(
ω2fρ − v2kγkγ′fj

)
φγ′ . (43)

Now we rearrange and sum over γ, explicitly deriving the equation of motion for the zeroth

Fourier component, φ0:

φ0 = −
∫
dγ

2π

(
1

ω2 − v2k2
γ

)∫
dγ′

2π

(
ω2fρ − v2kγkγ′fj

)
φγ′ . (44)

The fj term vanishes upon reversing the order of integration and integrating over γ (the

integrand is of the form cos(γ)/(1 + cos2(γ))). Thus the integral over γ′ is trivial, taking

φγ′ → φ0. The φ0’s then drop out, giving us the condition

1 = −ω2fρ

∫
dγ

2π

(
1

ω2 − v2k2
γ

)
= − |ω|fρ√

ω2 − v2k2
. (45)

Thus we find

fρ = −

√
1−

(
vk

ω

)2

∈ (−1, 0) =⇒ ω =
v|k|√
1− f 2

ρ

∀ fρ ∈ (−1, 0). (46)

The zero sound mode is only defined for −1 < fρ < 0 and has a dispersion ω > v|k|.

In order to solve for the other zero sound mode, we want to rewrite the Lagrangian in

terms of the θγ fields. I show how this is done in Appendix C and quote the result,

L =
kBη

4πN

∑
γ,γ′

θγ

(
v−1ω2

(
δγγ′ +

1

N
f̃ρ
)
− vkγkγ′

(
δγγ′ +

1

N
f̃j
))
θγ′ , (47)

where the dual Landau parameters are given by fρ = − fj
1+fj

and fj = − fρ
1+fρ

. The calculation

is equivalent to the one above, so we can see from inspection that the θ0 zero sound mode

exists for −1 < f̃ρ < 0 (i.e. for fj > 0 in terms of the original parameters) with a dispersion

ω = v|k|/
√

1− f̃ 2
ρ . The general storyline is that couplings between the charge densities,

∂τφ, give rise to collective phase modes (φ0), while couplings between current densities,

∂τθγ, give rise to collective density modes (θ0).
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We now move to a calculation of the real-space correlation function at large separations.

The authors’ section on this seems unnecessarily complicated. The basic idea is that, at

large spatial distances x ∼ kB/Λ
2, we need some way of accounting for the curvature of the

Bose surface. We will therefore want a decomposition in terms of infinitesimal patches such

that we can integrate over γ. We define new patch fields

ψ(x, τ) =

∫
dγ

2π
eikB γ̂·xψ̃γ(x, τ) (48)

which are similar to the previous patch fields ψγ except that they are only supported on an

infinitesimal sliver of momentum space in the γ̂⊥ direction. Again we’ll decompose these into

φ̃γ and θ̃γ fields to represent the low-energy fluctuations. The correlation function between

vertex operators eiφ̃γ is equivalent to the result of Eq. (18) while taking Λ⊥ → ∞, which

amounts to taking δΛ(x⊥)→ 1. Thus the correlation function is completely independent of

the coordinate x⊥. We can then solve for the correlation function between UV bosons:

〈ψ(x, τ)ψ†(0)〉 =

∫
dγ

2π

∫
dγ′

2π
eikB γ̂·x〈ψ̃γ(x, τ)ψ̃†γ′(0)〉

∼
∫
dγ

2π

∫
dγ′

2π
eikB γ̂·x〈eiφ̃γ(x,τ)e−iφ̃γ′ (0)〉

∼
∫
dγ

2π
eikB γ̂·x

1

(x2
γ + v2τ 2)η/2

(49)

where we have omitted overall factors (and, to be clear, the integral over γ runs from −π

to π). Now the authors make a useful approximation. The quantity kBx ∼ (kB/Λ)2 � 1

so the integrand will oscillate rapidly at points for which cos(γ) is changing as a function

of γ (we’ve taken xγ = x cos(γ)). We can therefore restrict our attention to the points

where cos(γ) is stationary, γ = 0,±π. At these points cos(γ) ≈ 1, so we can make this

approximation in the denominator and take it to be independent of γ. We therefore obtain,

for large separations,

〈ψ(x, τ)ψ†(0)〉 ∼ J0(kBx)

(x2
γ + v2τ 2)η/2

(50)

where J0(x) is a Bessel function of the first kind. Setting τ = 0, we expand the Bessel

function for large arguments to get the asymptotic form

〈ψ(x, τ)ψ†(0)〉 ∼ cos(kBx− π/4)

xη+1/2
. (51)

If one were to take η = 1 and kB → kF , this would be same asymptotic form observed in

Fermi liquids: the correlation functions oscillate with a frequency set by the Bose momentum,
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offset by a π/4 phase shift. The UV bosons have a correlation function that decays more

quickly with distance than the patch field bosons (which have correlations that fall off as

∼ x−η) due to destructive interference from different parts of the Bose surface.

Finally, to further characterize this phase of matter, we will determine whether it is a

metal, a superfluid, or an insulator. We follow the procedure set out in Ref. [14]: minimally

coupling to a gauge field and then taking static limits. The formal procedure will be to

integrate out the φ fields and obtain an effective action for the gauge field, A, before taking

the limits. The coupled Lagrangian is

L[A] =
kB

4πNη

∑
γ

(
v−1
(
∂τφγ − Aτ

)2
+ v
(
∇γφγ −A · γ̂

)2)
, (52)

where the authors show that this is equivalent to coupling the field A directly to the zeroth

Fourier mode, φ0. Again this makes sense because this is the only Fourier mode charged

under the microscopic U(1) symmetry. We immediately proceed to integrate out the φγ

fields. We’ll do this explicitly, defining S = 1
N

∑
γ Sγ:

Sγ =
kB
4πη

∫
d2x dτ

(
v−1
(
∂τφγ − Aτ

)2
+ v
(
∇γφγ −A · γ̂

)2)
=

kB
4πη

∫
d2k dω

(2π)3

(
v−1
(
ωφγ − Aτ

)2
+ v
(
kγφγ −A · γ̂

)2)
=

kB
4πη

∫
d2k dω

(2π)3

(
(v−1ω2 + vk2

γ)φ
2
γ − 2(v−1ωAτ + vkγAγ)φγ + v−1A2

τ + vA2
γ

)
.

(53)

We now complete the square by adding and subtracting a term quadratic in A, such that one

could perform a trivial Gaussian integral over the φγ fields in the path integral. Removing

this purely quadratic term, we obtain the effective Lagrangian for the A field:

Sγ =
kB
4πη

∫
d2k dω

(2π)3

(
v−1A2

τ + vA2
γ −

v−1

ω2 + v2k2
γ

(Aγkγv
2 + Aτω)2

)
. (54)

Cleaning this up a bit, we can pull out an effective Lagrangian in terms of A:

Leff [A] =
kBv

4πη

∫
dγ

2π

A2
γω

2 + A2
τk

2
γ − 2AτAγkγω

ω2 + v2k2
γ

. (55)

Note that we took N →∞ above such that we integrate over γ. We’ll work in the Coulomb

gauge, imposing k ·A = 0. Thus, if we identify kγ = k cos(γ), then we should take Aγ =

A sin(γ). The Lagrangian therefore takes the form

Leff [A] =
kBv

4πη

∫
dγ

2π

(Aω sin(γ)− Aτk cos(γ))2

ω2 + v2k2 cos2(γ)

=
kBv

4πη

(
A2
τ

v2

(
1− 1√

1 + ξ2

)
+
A2

ξ2

(√
1 + ξ2 − 1

)) (56)
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where ξ = vk/ω.

Given this expression we will set Aτ = 0 and take limits of ω → 0 and k → 0 in both

orders. The limit in which ω = 0 first corresponds to transverse response (analogously,

think of B = ∇× A remaining finite while E = ∂A/∂t goes to zero), and therefore a finite

value to this limit will correspond to a finite superfluid density. This is analogous to the

Meissner effect. Specifically, the effective Lagrangian in this limit will be equal to 1
2π
DsA

2

where superfluid weight Ds = πns/m [14] and ns is the superfluid density. In this expression

above, this limit corresponds to ξ → ∞, in which case Leff [A] → 0: the Bose-Luttinger

Liquid is not a superfluid.

The opposite limit, where k = 0 first, can be thought of as the response to a DC electric

field. The result in this limit is equivalent to the above result except with Ds replaced

by D = πn/m, the Drude weight (n is the density of charge carriers). The Drude weight

is the prefactor to the delta function contribution to the low-temperature conductivity,

σ(ω) = Dδ(ω) + σreg(ω). This delta function peak at zero frequency is a characteristic

of (clean) metals at zero temperature, when the scattering lifetime diverges. This limit

corresponds to ξ → 0 and Leff [A]→ kBvA
2

8πη
: the Bose-Luttinger liquid is a metal! From this

we can extract the Drude weight of the Bose-Luttinger liquid, D = kBv/4η. One might look

at this result and attempt to pull out an effective mass m = kB/v and effective carrier density

n = k2
B/4πη (as the authors do), but seeing as these quantities don’t show up anywhere else

I’ll let the reader draw their own conclusions.

V. FINITE DENSITY

Up until now, we have been discussing a particle-hole symmetric UV theory with zero

background density. If our result that the BLL is a compressible, metallic phase of matter

is to be sensible, we should determine that these results hold at fixed density.

Particle-hole symmetry enforced that the Lagrangian could only contain a ∂2
τ term – no

single time derivatives, ∂τ . A Lagrangian at fixed density would instead take the form

L = ψ∗
(
− (∂τ + µ) +

1

8mk2
B

(
−∇2 − k2

B

)2
)

+
g

4
|ψ|4. (57)

Note that the squared time derivative has been removed here. This is because, with a single

time derivative, we have to rescale space and time by different factors of Λ′/Λ under the
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renormalization group. Essentially we have to fix the rules of the game so that the free

Lagrangian is invariant under rescaling. If we had kept both the ∂2
τ and ∂τ terms in and

rescaled ω and k by one power of Λ′/Λ, then we would find that the ∂τ term grows faster

than the ∇2 term. This would mean that our kinetic term is irrelevant, which we don’t

want. We therefore rescale ω by (Λ/Λ′)2 (which is to say that we use a dynamical exponent

z = 2) in order to ensure that the kinetic term is marginal. Under this rescaling, we would

then find that the ∂2
τ term is irrelevant – and thus, it is not included in Eq. (57).

The analysis of this Lagrangian is very similar. We can clearly expand in terms of different

patch fields, ψγ, as before. We assume µ > 0 (equivalent to r < 0 in Eq. (8)), so we can

then expand each ψγ in terms of amplitude and phase fluctuations. These can be rewritten

in terms of the conjugate variables θγ and φγ,

ψγ(x) =

√
ρ0 +

kB
2π
∇γθγ e

iφγ . (58)

We might now worry about how θ transforms under translation, θ(x)→ θ(x+ µ) + ρ0
kB
γ̂ · µ.

This is because θ(x) is the integrated density (it’s gradient corresponds to density fluctua-

tions), so with a finite average density it must change as a function of position. The fixed

point Lagrangian and the most relevant perturbations are not altered by this, however, so

this doesn’t change any of our analysis. Expanding Eq. (57) in these variables leads to a

Lagrangian of the form

L̃0 =
1

N

∑
γ

(
kB
2π
∇γθγ∂τφγ + β(∇γφγ)

2

)
+

1

N2

∑
γ,γ′

(
gθ(γ − γ′)(∇γθγ)(∇γ′θγ′) + gφ(γ − γ′)(∇γφγ)(∇γ′φγ′)

)
(59)

We get no (∂τφγ)
2 term because there is no ∂2

τ term in the UV Lagrangian. Instead, the

∂τ term gives us a coupling between ∇γθγ and ∂τφγ. If we were now to integrate out the

θγ fields, we would find that the (∇γθγ)(∂τφγ) term would simply rescale the term coupling

∂τφγ on different patches (i.e. it would just change the definition of the vector b discussed in

Appendix C). In the absence of a (∂τφγ)
2 term, then, the form of the effective Lagrangian

for the φ fields would be

L̃0[φ] =
kB

4πηN

∑
γ

v(∇γφγ)
2+

kB
4πηN2

∑
γ,γ′

(
v−1fγ,γ

′

ρ (∂τφγ)(∂τφγ′)+vf
γ,γ′

j (∇γφγ)(∇γ′φγ′)

)
.

(60)
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At this point the authors make a physical argument. Based on the results we have

already derived, we know that the (∂τφ)2 terms lead to charge stiffness in the Lagrangian.

Furthermore, it was already shown that the Landau parameters only make an O(1/N)

contribution to the correlation function. Thus, the Lagrangian above has no terms making

an O(N0) contribution to the charge stiffness. This should trouble us because N flows under

RG, so it is as unphysical as the cutoff Λ. In particular, as the correlation function will be

N -dependent to leading order, we will derive scaling exponents that are N -dependent. We

should not find that physical observables depend on N , just as we should not find that they

depend on Λ. On the basis of this observation, the authors deem it imperative to keep the

∂2
τ term in the UV Lagrangian, even if it is irrelevant.

This may seem a bit far-fetched, but let’s see how it plays out. Consider a new UV

Lagrangian given by

L = ψ∗
(
− (∂τ + µ)− λm2

k2
B

∂2
τ +

1

8mk2
B

(
−∇2 − k2

B

)2
)

+
g

4
|ψ|4. (61)

As stated from the outset, under the z = 2 RG scaling the parameter λ is irrelevant. Keeping

it in, however, it contributes a (∂τφγ)
2 term to the IR Lagrangian. Notice, now, that the

single time derivative term renormalized the charge density coupling term ∼ (∂τφγ)(∂τφγ′)

after we integrated out the θγ fields. This term rescales in the same way as the (∂τφγ)
2

under RG with any dynamical exponent. This means that, although λ was an irrelevant

coupling the UV Lagrangian with z = 2 scaling, we find that it has precisely the same

scaling dimension as the ∂τ in the IR Lagrangian. For that reason, we should keep the

∂2
τ term in the UV Lagrangian with finite density, and the IR Lagrangian assumes a form

identical to Eqs. (8) and (9). Our prior analysis of the fixed point therefore applies just as

well at finite density.

VI. 3 + 1D FIXED POINT

At this point we have finished the analysis of the 2 + 1D model. This section is meant

to assure the reader that the exact same analysis can be carried out in 3 + 1D. We consider

the same UV Lagrangian in Eq. (1). The patch decomposition goes through in an identical

manner, where the patches are now cubes of volume Λ3 and are labeled by a unit vector γ̂.

There are a total of N = 4πk2
B/Λ

2 patches. We again break up the UV boson fields ψ(x)
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into patch fields. Expanding the kinetic energy term again yields a quasi-1D dispersion,

which takes us to the same patch Lagrangian given by Eq. (4). The kinetic terms we discard

will differ in 3D, but those should not affect our analysis to leading order. There are also

additional scattering processes that are allowed in 3D (non-forward scattering), but these

will always be less relevant than the BCS coupling [1].

Now we make the same amplitude-phase decomposition and rewrite the Lagrangian in

terms of φγ and θγ fields. As our patch Lagrangian is of the same form, it should be no

surprise that the fixed point Lagrangian is also identical. The derivation of the correlation

functions from Sec. III follows through in exactly the same manner. The only difference is

that we have two directions perpendicular to γ̂, so we instead find

〈eiφγ(x)e−iφγ′ (0)〉 ∼ δγ,γ′δΛ(x⊥,1)δΛ(x⊥,2)

((Λγ̂ · ~x)2 + (1 + Λvτ)2)η/2
(62)

with δΛ(x) functions constraining both transverse displacements (by my definitions x⊥,1,

x⊥,2 and γ̂ · ~x are the lengths of the three orthogonal components of ~x).

Turning to the question of stability, the most relevant perturbation is again the BCS

pairing term:

1

N2

∑
γ,γ′

gBCS(γ̂ · γ̂′) cos
(
φγ(r) + φγ+π(r)− φγ′(r)− φγ′+π(r)

)
, (63)

where it should be understood that γ and γ+π indicate antipodal points on the Bose surface.

The first point to make is a rehashing of a point emphasized in Sec. III: even though there are

four spacetime dimensions in this problem, the rescaling of two of the momentum directions

(k̂⊥,1 and k̂⊥,2) will be cancelled out by a proportionate increase in the number of patches,

N . This means that the scaling dimension of the operator cos(ϕγ,γ′) in the 3D case should

still be compared to 2 rather than 4, as was the case in the 2 + 1D problem. With that

remark, the tree-level stability analysis is identical to the 2 + 1D problem (as we are only

eliminating modes from the effective 1 + 1D problem) and gives an RG eigenvalue of 2− 2η.

Thus, the 3 + 1D BLL fixed point is stable for η > 1, just as in 2D.

So we find that pretty much everything is the same. We shouldn’t expect that this

is the case for everything, however. In particular, one would expect there to be a few

phenomenological differences between 2D and 3D. The one the authors mention is the UV

boson correlation function, which should have a slightly different asymptotic form. We can

again imagine breaking up the Bose surface into infinitesimal chunks that we’ll integrate
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over. We already solved for the correlation function, and we know the correlation function

of the φ̃γ variables living on the infinitesimal slivers will be identical except that they will

be completely independent of the transverse directions x⊥,1 and x⊥,2. We therefore find

〈ψ(x, τ)ψ†(0)〉 ∼
∫
dγ

4π

∫
dγ′

4π
eikB γ̂·x〈eiφ̃γ(x,τ)e−iφ̃γ′ (0)〉

∼
∫
dγ

4π
eikB γ̂·x

1

(x2
γ + v2τ 2)η/2

(64)

Now note that dγ is a solid angle over the Bose sphere. Picking the polar axis along x̂ and

defining polar and azimuthal angles θ and φ, respectively (apologies for the overlap with

field variable names), we can rewrite this as

〈ψ(x, τ)ψ†(0)〉 ∼
∫
dφ d(cos(θ)) eikBx cos(θ) 1

(x2 cos2(θ) + v2τ 2)η/2

∼
∫ 1

−1

dz
eikBxz

(x2z2 + v2τ 2)η/2

∼ sin(kBx)

xη+1

(65)

We took τ = 0 in the last step. We still see spatial oscillations at kB, but the phase has

shifted by π/4 from the 2D case. We also get more destructive interference by integrating

patch contributions over a sphere rather than a circle, so the correlator falls off more quickly

than in 2D.

VII. EXPERIMENTAL REALIZATION

This paper proposed the existence of a novel form of matter, so an important question to

address is where we might look to find it. I will briefly address some possibilities, although

there are far more questions than answers in this section.

A. Metallic Helimagnet

These are ferromagnetic materials such as manganese monosilicide (MnSi) and iron ger-

manide (FeGe) whose spins align in a helical pattern at low temperatures. The origin of

this spiral pattern is the Dzyaloshinskii–Moriya (DM) interaction, which is an interaction

between spins of the form
∫
~S · (∇ × ~S). By applying pressure, it has been observed that

MnSi exhibits a phase transition from the ferromagnetic phase with this helical spin ordering
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to a paramagnetic phase with partial long-range magnetic ordering [15]. More specifically,

the DM interaction induces spiral ordering of spins which, due to other spin-orbit interac-

tions, is locked along the reciprocal-space direction Q = 〈111〉 in the ferromagnetic phase.

In Ref. [15] this is determined by neutron diffraction measurements. Upon crossing the fer-

romagnetic transition, one would assume that the magnitude of the magnetic moment (and

hence the spiral ordering as well) should vanish. Instead, the authors measure scattering

intensity across a small sphere in momentum space. Rather than localized Bragg-like peaks,

they find that the scattering intensity is (not quite uniformly) smeared out. They interpret

this as the same spiral order parameter whose magnitude survives above the ferromagnetic

transition, but whose direction is no longer pinned in reciprocal space. The state is there-

fore paramagnetic (insofar as it is decidedly not ferromagnetic) but possesses some kind of

pseudo-long-range order. Additionally, in this region the material displays non-Fermi-liquid

behavior with a resistivity that vanishes as T 3/2 [16].

As this result is indicative of a bosonic excitation living on the surface of a sphere in

momentum space, the authors of Ref. [5] claim that it could be described by the 3 + 1D

BLL fixed point. They then proceed to show that coupling the BLL to a free electron gas

would lead to a resistivity proportional to T η, indicating that a BLL with η = 3/2 (which is

within the stable η > 1 regime) could describe the observed results. While I have not found

evidence that this phenomenon has been widely observed in other metallic helimagnets, it

raises the possibility of a condensed matter environment that may host BLL-type physics.

B. Spin-Orbit Coupled Bosons

A proposal that the authors only cursively address here but has been mentioned else-

where [17] is the use of spin-orbit coupled bosons to realize this dispersion relation. Such

systems have already been engineered in cold atoms through Raman dressing of the hyperfine

atomic energy levels (these hyperfine levels can be considered pseudospin states) [18–22]. It

has been determined that the lower band of Rashba spin-orbit coupled bosons (whose cou-

pling is of the form ∼ ~p · ~σ) would have minima along a circle in 2 + 1D [23] and a sphere in

3+1D [24]. This system would therefore appear to realize the UV Lagrangian in Eq. (4). In

general it is non-trivial to engineer this Rashba coupling because the Raman-dressing scheme

more naturally realizes some combination of Rashba and Dresselhaus couplings. This would
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FIG. 2. Plot of the localized and itinerant bands (first panel) and the exciton dispersion relation

resulting from an onsite interaction term. Taken from Ref. [25].

mean that the dispersion relation tends to be anisotropic, having a single minimum in mo-

mentum space (e.g. Fig. 2 of Ref. [18]). With that said, nothing precludes the generation of

a nearly-isotropic dispersion relation. Although the authors of Ref. [5] claim that the BLL

would be stable to weak perturbations of the circular Bose surface, it is unclear how it would

fare if the dispersion minima were nearly but not completely degenerate. Such a system

would otherwise be an ideal candidate for realizing the BLL, as cold atom systems could

realize the low-density, weakly-interacting limit about which we expanded in this paper.

C. Excitons in Spin-Orbit Coupled Fermi System

One might also imagine that excitons, bosonic bound states of particles and holes, could

realize the BLL fixed point. To that end, Ref. [25] studies exciton formation in so-called

Kondo insulators. Kondo insulators are materials in which itinerant electrons hybridize

with localized spins to form a heavy band insulator. The specific material they consider is

samarium hexaboride, SmB6. They model the system by considering itinerant d electrons

that hybridize with localized f electrons due to stong spin-orbit coupling. The d and f bands

are shown in the first panel of Fig. 2. Note that they already possess a ring-like dispersion due

to the spin-orbit coupling. One can imagine that excitons would form along the ring where

the bands are closest. Furthermore, they show that the density of states is peaked near these

band edges – a further indication that the system would be susceptible to exciton formation.
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The authors then consider a Hubbard-like interaction between f electrons, which can lead

to the formation of excitons. Considering just the terms contributing to exciton formation,

they find the exciton dispersion shown in the second panel of Fig. 2. This dispersion has,

again, a nearly degenerate ring of minima at fixed quasimomentum. The authors find that

the lattice lifts the degeneracy, so in this particular setup one would again have to reckon

with the question raised in the section above.

There are a few other matters that further complicate the exciton proposal. One question

would be the nature of interactions between excitons, which have proven challenging to

understand [26]. Our approach to the BLL involved weak, short-ranged UV interactions.

This seems like a reasonable approximation for neutral particle-hole pairs, but without a

proper accounting it is unclear what complications might arise. Another would be the

role of a finite lifetime: while the authors demonstrate that the BLL fixed point does not

require U(1) charge conservation, it would not be outlandish to imagine that decay and

recombination processes might change our analysis.

D. Bosons on a Honeycomb Lattice

A particularly clean example of a dispersion with such degenerate minima is a honeycomb

lattice with nearest-neighbor and next-nearest-neighbor hopping. Others have studied hard

core bosons on this lattice [27–29] which maps onto a frustrated XY model. It has been

argued that this model realizes a Bose metal phase where the momentum occupation displays

a peak in a circular Bose surface. The authors of Ref. [5] attempt to distinguish the BLL

from a Bose metal insofar as the BLL is a more generally formulated on the notion of a Bose

surface hosting collective gapless modes. With that said, the realization in Sec. IV that the

BLL is metallic, and thus an example of a Bose metal, muddies the distinction.

Solving for the bands is simple, but if one doesn’t want to bother with that there’s a

clean form written out in Ref. [27]. Three examples are shown in Fig. 3 for t2/t1 = 0.18,

0.25 and 0.4. The honeycomb lattice with next-nearest-neighbor hopping has minima along

a distorted ring centered about ~k = 0 for 1/6 ≤ t2/t1 ≤ 1/2. As t2/t1 approaches 1/2,

however, the ring begins to develop sharp corners that would be incompatible with our

analysis. Conversely, the ring better approximates a circle closer to t2/t1 = 1/6 but the

effective harmonic potential in the radial direction decreases in magnitude. Decreasing this
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FIG. 3. Plots of the lowest band on a honeycomb lattice with nearest-neighbor hopping t1 and

next-nearest-neighbor hopping t2. Shown are plots for t2/t1 = 0.18, 0.25, and 0.4. A blue line

indicates the position of the degenerate minima.

harmonic trapping would effectively mean that one would have to work at smaller densities

and interaction strengths in order to be justified in flowing to the IR fixed point we identified.

With that said, we did not derive bounds on the allowed densities and interaction strengths

for which this analysis is valid. Furthermore, results indicating the presence of a Bose surface

in strongly-interacting systems should bolster one’s confidence in this platform’s ability to

host a BLL. One should also consider this model compared to the others presented up

until now. This appears to be the only model presented where the distortions to the UV

Bose surface are in the radial direction, yet the ring of minima are precisely degenerate. It

seems likely that radial distortions would be a less severe approximation of the dispersion

envisioned here. Optical honeycomb lattices have been realized before [30, 31], although I

was not able to find a reference that implemented next-nearest-neighbor hopping.

VIII. CONCLUSIONS

In this paper we have demonstrated the stability of a novel phase of matter. The Bose-

Luttinger liquid is a state with gapless excitations along a surface in momentum space,

analogous to a Fermi liquid. The similarity extends to many of its phenomenological prop-

erties: the BLL is a compressible, metallic phase with a T -linear specific heat; it has Landau

parameters coupling different charge and momentum densities on the Bose surface; and the

UV boson correlation function exhibits spatial oscillations at a period set by the Bose mo-

mentum. As the Bose surface itself does not arise due to degeneracy pressure, however,

there is no clear analog of Luttinger’s theorem. This means that charge and momentum

densities in the BLL are in principle decoupled, which implies the existence of two zero
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sound modes instead of one as well as a continuously-tunable parameter η that controls the

decay of correlation functions as well as a variety of other properties. More broadly, this

means that excitations of the BLL fixed point are not quasiparticles. They should instead

be understood as collective density modes, as one would find in a Luttinger liquid.

It is not obvious where one would look to realize this phase of matter. The precisely de-

generate and circular dispersion minimum posited in this paper arises in the lower band

of Rashba spin-orbit coupled bosons, but Raman-dressing procedures generally lead to

Dresselhaus-type contributions as well that would complicate the matter substantially. The

authors claim that a BLL fixed point might describe exotic partial long-range magnetic order

in the paramagnetic phase of metallic helimagnets, leading to non-Fermi-liquid behavior in

the resistivity. While their model can arrive at a resistivity with the same low-temperature

scaling, there is a substantial amount of uncertainty on this point. In general it would appear

that cold atom systems, with the ability to control interactions and engineer superlattices

and artificial spin-orbit coupling, are the best option for realizing this phase.

Appendix A: Landau Parameter Correction to Correlation Function

As mentioned above, in the absence of Lf the Lagrangian L0 is diagonal in the φγ fields

and we have

Gγγ′

φ (k, ω) = 〈φγ(k, ω)φγ′(−k, ω)〉 = δγγ′
2πvηlΛ
ω2 + v2k2

γ

(A1)

where kγ = γ̂ · k. Note that the authors define the perpendicular length scale of the

patch fields l−1
Λ =

∫ Λ

−Λ
dk⊥
2π

= Λ/π = kB/N for convenience. Now let’s see how the Landau

parameters affect this result. This is in general a considerably more complicated calculation,

so we’ll just take fγ,γ
′

ρ = fρ to be a constant and fγ,γ
′

j = 0. We write the Lagrangian out in

Fourier space,

L =
kB

4πNη

∑
γ,γ′

φγ
(
(v−1ω2 + vk2

γ)δγ,γ′ +
1

N
v−1ω2fρ

)
φγ′ . (A2)

This equation is of the form φγMγ,γ′φγ. We must invert the matrix M to obtain the prop-

agator, so let’s break it down into two parts: M = B + aC where C is an N × N matrix

where every value is 1/N and B is diagonal. The strategy here will be to perform a power
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expansion and sum the terms to all orders:

(B + aC)−1 = B−1

∞∑
k=0

(
− aCB−1

)k
. (A3)

Clearly to zeroth order we recover the result above:

[B−1]
(0)
γγ′ = δγγ′

2πvηlΛ
ω2 + v2k2

γ

≡ 2πvηlΛG
0
γδγγ′ . (A4)

It’s not hard to see that, to second order, we simply have the product of the two G0
γ terms:

[B−1]
(0)
γγ′ + [B−1]

(1)
γγ′ = 2πvηlΛ

(
G0
γδγγ′ −

ω2fρ
N

G0
γG

0
γ′

)
. (A5)

Given that fact, the crucial observation is that each successive multiplication by (−aCB−1)

multiplies the previous term by
(
− 1

N
ω2fρ

∑
γ′′ G

0
γ′′

)
. This becomes quite clear once realizing

that aCB−1 is composed of identical rows of the form [aCB−1]γγ′ = 1
N
ω2fρG

0
γ′ . This gives

us the following expression:

Gγγ′

φ (k, ω) =
∞∑
l=0

[B−1]
(l)
γγ′ = 2πvηlΛ

(
G0
γδγ,γ′ −

ω2fρ
N

G0
γG

0
γ′

( ∞∑
l=0

(
− 1

N
ω2fρ

∑
γ′′

G0
γ′′

)l))
.

(A6)

At this point things look like a mess. Our next task is to perform the sum over γ′′, absorbing

the factor of N to turn it into an integral:

1

N

∑
γ′′

G0
γ′′ →

∫
dγ

2π

1

ω2 + v2k2 cos2(γ)
=

1

|ω|
√
ω2 + v2k2

. (A7)

Now we can perform the sum over l in isolation,

∞∑
l=0

(
− |ω|fρ√

ω2 + v2k2

)l
=

1

1 + fρ|ω|/
√
ω2 + v2k2

, (A8)

and by inserting that back into the original formula we arrive at

Gγγ′

φ (k, ω) = 2πvηlΛ

(
G0
γδγγ′ −

ω2fρ
N

G0
γG

0
γ′

1

1 + fρ|ω|/
√
ω2 + v2k2

)
= 2πvηlΛ

(
δγ,γ′

ω2 + v2k2
γ

− 1

N

1

(ω2 + v2k2
γ)(ω

2 + v2k2
γ′)

ω2fρ

1 + fρ|ω|/
√
ω2 + v2k2

)
.

(A9)

Thus, like the Fermi liquid, the Landau parameters affect the correlation function only at

order 1/N . Seeing as N will grow as we reduce the cutoff, we are prompted to set the
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Landau parameters equal to zero for the majority of our calculations. The exception will

be in the discussion of certain phenomenological properties for which they make an O(1)

contribution. It’s also worth mentioning that this is also a feature of Fermi liquids. That

Landau parameters only contribute to the correlation functions (and, importantly, to the

self energy) at order 1/N is related to the fact that Landau parameters cannot destabilize

the Fermi liquid unless they are “sufficiently singular”.

Appendix B: One-Loop RG

We want to calculate the correction at one loop, which means calculating the quantity

1

2

(
〈δS[φ< + φ>]2〉> − 〈δS[φ< + φ>]〉2>

)
(B1)

which appears in the cumulant expansion in Eq. (22). The full term looks like

I(2) =
1

N4

∑
γ1,γ2,γ3,γ4

gBCS(γ1 − γ2)gBCS(γ3 − γ4)

∫
d3r1

∫
d3r2 ×(

〈cos(ϕγ1,γ2(r1)) cos(ϕγ3,γ4(r2))〉 − 〈cos(ϕγ1,γ2(r1))〉〈cos(ϕγ3,γ4(r2))〉
)
. (B2)

Separating the cosines into complex exponentials, we can rewrite the term in parentheses as

1

4

∑
ε,ε′=±

(
〈eiεϕγ1,γ2 (r1)eiε

′ϕγ3,γ4 (r2)〉 − 〈eiεϕγ1,γ2 (r1)〉〈eiε′ϕγ3,γ4 (r2)〉
)

(B3)

where one should recall the definition

ϕγ1,γ2(r) = φγ1(r) + φγ1+π(r)− φγ2(r)− φγ2+π(r). (B4)

The key thing to note here is that if none of the γi are equal then the first term is cancelled

by the second term. This would correspond to a disconnected diagram. Similarly if γ1 = γ2

or γ3 = γ4 but no other terms are equal, the term in parentheses evaluates to zero (it’s also

true that ϕγ1,γ2(r) = 0 when γ1 = γ2). The terms that will renormalize the interaction term

will therefore have either γ1 or γ2 equal to either γ3 or γ4. There are four such choices,

each of which are equivalent because the cosine is an even function. I’ll just multiply by the

factor of 4, rename the external indices γ and γ′, and rename the internal index α. This

corresponds to the following Feynman diagram:
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�, γ

γ + π

α

α + π

γ′

γ′ + π

r1 r2

Let’s consider one such term.

1

4

∑
ε,ε′=±

(
〈eiεϕγ,α(r1)eiεϕα,γ′ (r2)〉 − 〈eiεϕγ,α(r1)〉〈eiεϕα,γ′ (r2)〉

)
=

1

2
cos
(
ϕ<γ,α(r1) + ϕ<α,γ′(r2)

)(
〈eiϕ>γ,α(r1)e

iϕ>
α,γ′ (r2)〉 − 〈eiϕ>γ,α(r1)〉〈eiϕ

>
α,γ′ (r2)〉

)
+

1

2
cos
(
ϕ<γ,α(r1)− ϕ<α,γ′(r2)

)(
〈eiϕ>γ,α(r1)e

−iϕ>
α,γ′ (r2)〉 − 〈eiϕ>γ,α(r1)〉〈e−iϕ

>
α,γ′ (r2)〉

)
(B5)

Here I just show that we expand the φ fields into fast and slow components and then take

the expectation value with respect to the fast variables. The expectation values are pure

real so we can then recombine the cosine of the slow variables as shown.

At this point I will take the liberty to say that we only want to consider the first term

on the right hand side for this particular choice of α. The reason is that the expectation

values connecting fields at r1 and r2 will constrain the difference between these positions to

be O(1/Λ), which we’ll see explicitly. It therefore makes sense to expand in r = r1 − r2,

a relative coordinate. This will furthermore be sensible because the expectation values

connecting r1 and r2 only depend on their relative position, r. We can naively see that

expanding

ϕ<γ,α(r1) + ϕ<α,γ′(r1 + r) = φ<γ (r1) + φ<γ+π(r1)− φ<α (r1)− φ<α+π(r1)

− φ<α (r1 + r)− φ<α+π(r1 + r)− φ<γ′(r1 + r)− φ<γ′+π(r1 + r) (B6)

to leading order in r gives

ϕ<γ,α(r1) + ϕ<α,γ′(r1 + r) ≈ ϕ<γ,γ′(r1) +O(r). (B7)
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This is the general strategy. If we had considered one of the complex exponentials where

ε 6= ε′ then we would have taken the cosine with the minus sign instead in order to perform

the same expansion. We will not consider the behavior of the other term as it clearly

generates a term that sums eight φ fields and therefore is generically less relevant than the

original BCS term at tree level.

In order to perform this expansion, we have to normal order the cosine. This is done [9]

by taking cos(φ) =: cos(φ) : e−
1
2
〈φ2〉 where the colons denote normal ordering. This will be

an expectation value taken with respect to the slow fields inside the cosine. Note as well

from the main text that

〈eiϕ>γ,α(r1)e
−iϕ>

α,γ′ (r2)〉 = exp

(
− 1

2
〈(ϕ>γ,α(r1) + ϕ>α,γ′(r2))2〉

)
. (B8)

If we combine the exponentiated expectation value from normal ordering with this factor,

one finds that

exp

(
− 1

2
〈(ϕ<γ,α(r1) + ϕ<α,γ′(r2))2〉

)
exp

(
− 1

2
〈(ϕ>γ,α(r1) + ϕ>α,γ′(r2))2〉

)
= exp

(
− 1

2
〈(ϕγ,α(r1) + ϕα,γ′(r2))2〉

)
, (B9)

This follows from the fact that 〈φγφγ′〉 ∝ δγ,γ′ . We can now write out the first term of

Eq. (B5) as

1

2
: cos

(
ϕ<γ,α(r1) + ϕ<α,γ′(r2)

)
: e−

1
2
〈(ϕγ,α(r1)+ϕα,γ′ (r2))2〉

(
1− e〈ϕ

>
γ,α(r1)ϕ>

α,γ′ (r2)〉
)
. (B10)

The problem now amounts to solving for these two expectation values. Let’s consider the

expectation value of the fast fields. First we use the fact that L0 is diagonal in γ to simplify:

〈ϕ>γ,α(r1)ϕ>α,γ′(r2)〉 = −〈φ>α (r1)φ>α (r2)〉 − 〈φ>α+π(r1)φ>α+π(r2)〉. (B11)

We then use the same manipulations from Sec. III to find

〈φ>α (r1)φ>α (r2)〉 = 2πηvlΛ

∫ Λ

sΛ

dω dk‖
(2π)2

∫ Λ

−Λ

dk⊥
2π

ei(k·x+ωτ)

ω2 + v2k2
‖

≈ 2πηv δΛ(xα⊥)

∫ Λ

sΛ

dω dk‖
(2π)2

cos(k‖x‖ + ωτ)

ω2 + v2k2
‖

= 2πη δΛ(xα⊥)

∫ Λ

sΛ

dq

(2π)2|q|

∫ π

−π
dθ cos(qrα cos(θ))

= η δΛ(xα⊥)

∫ Λ

sΛ

dq

|q|
J0(qrα)

(B12)
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I did a few things there. In the first line we took

lΛ

∫ Λ

−Λ

dk⊥
2π

ei(k·x+ωτ) = ei(k‖x‖+ωτ)

(
lΛ sin(Λx⊥)

x⊥

)
≈ ei(k‖x‖+ωτ)δΛ(x⊥) (B13)

where δΛ is defined in Eq. (19). This essentially fixes x⊥ ∼ 1/Λ. I then changed variables

to q =
√
k2
‖ + ω2/v2 and defined the cosine in terms of rα =

√
x2
‖ + v2τ 2. Note that this

variable rα is the magnitude of the relative coordinate, r1− r2. For s very close to 1 we can

approximate the integral and obtain

〈φ>α (r1)φ>α (r2)〉 ≈ −η ln(s)J0(Λrα)δΛ(xα⊥). (B14)

If we define s = 1− ν where 0 < ν � 1, this gives us(
1− e〈ϕ

>
γ,α(r1)ϕ>

α,γ′ (r2)〉
)
≈ −2ηνJ0(Λrα)δΛ(xα⊥). (B15)

The Bessel function is peaked near rα = 0, motivating us to expand in small rα (which

should be ∼ 1/Λ).

Now we come to the other expectation value, which ostensibly looks like a problem.

Expanding, we get

〈(ϕγ,α(r1) + ϕα,γ′(r2))2〉 = 〈φ2
γ(r1)〉+ 〈φ2

γ+π(r1)〉+ 〈φ2
γ′(r2)〉+ 〈φ2

γ′+π(r2)〉

+ 〈(φα(r1)− φα(r2))2〉+ 〈(φα+π(r1)− φα+π(r2))2〉. (B16)

We already computed the α-dependent terms, approximating the exponentiated result in

Eq. (18). The problem is that the expectation value of φ2 has a non-integrable divergence

for small momenta. Inserting a finite system size,

−1

2
〈φγ(r1)2〉 = −πηvlΛ

∫
d2kdω

(2π)3

1

ω2 + v2k2
γ

= −1

2
η

∫ Λ

1/L

dkγ
|kγ|

= −1

2
η ln(ΛL).

(B17)

This would imply that the relevant term from Eq. (B5) takes the form

−ην (ΛL)−2η δΛ(xα⊥) J0(Λrα) G0
α(r) G0

α+π(r) : cos
(
ϕ<γ,α(r1) + ϕ<α,γ′(r2)

)
: (B18)

where I refer to the result of Eq. (18) as G0
α(r) and r = r1 − r2 is the relative coordinate.

It’s actually the case that G0
α(r) = G0

α+π(r), so this could be simplified further. This term
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looks like it vanishes upon taking L → ∞. Proceeding as if everything’s fine, however, we

can now expand the cosine as prefaced earlier. The leading-order contribution gives us back

the cos(ϕ<γ,γ′) of the original interaction. Only that’s not exactly what it gives back – what

we really have is : cos(ϕ<γ,γ′) :, which we can’t compare directly to the original term. We

therefore have to invert the relation we used to normal-order the cosine. Using the fact that

L0 is diagonal in the patch fields, we have that

e
− 1

2
〈(ϕ<

γ,γ′ (r1))2〉
= e−2〈(φ<)2〉 = (Λ′L)−2η. (B19)

This means that the factor we are absorbing is precisely the factor that would have caused

the entire result to vanish! Combining, we obtain the familiar factor (ΛL)−2η(Λ′L)2η = s2η.

Changing variables of integration
∫
d3r1

∫
d3r2 →

∫
d3r1

∫
d3r so that we integrate over

the relative coordinate, we find that the net contribution to I(2), which I’ll call I(2a) because

we threw some terms away, is

I(2a) ∼ 1

N2

∑
γ,γ′

1

N2

∑
α

gBCS(γ − α)gBCS(α− γ′)
∫
d3r1

∫
d3r×(

− ην s2η δΛ(xα⊥) J0(Λrα)
(
G0
α(r)

)2
cos
(
ϕ<γ,γ′(r1)

))
. (B20)

Rearranging,

I(2a) ∼ −ην s2η 1

N2

∑
γ,γ′

(∫
d3r1 cos

(
ϕ<γ,γ′(r1)

))
×(

1

N2

∑
α

gBCS(γ − α)gBCS(α− γ′)
(∫

d3r δΛ(xα⊥) J0(Λrα)
(
G0
α(r)

)2
))

. (B21)

The first thing to note is that there’s an extra factor of 1/N because we got rid of the second

sum with a delta function. This won’t be a problem, however, because the integral over xα⊥

gives a factor of 2/Λ due to the smeared out delta function. Recall from the definition of N

that 1/NΛ = 1/πkB. The remaining terms in the integral are functions of Λx‖ and Λvτ , so

we can rescale the integral and obtain a constant times 1/vΛ2. Interestingly it doesn’t seem

like I’ll be able to get rid of this factor... I’m not sure if this is correct. We can now define

a positive constant C where

C = Λ2v

∫
d2r J0(Λrγ)

(
G0
γ(r)

)2
(B22)
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is independent of Λ and v as discussed (and is therefore invariant under rescaling). Rescaling

the r1 spacetime dimensions gives a factor of s−2. We collect terms to find

I(2a) ∼ −ηνC
Λ2v

s−2+2η 1

N2

∑
γ,γ′

(
1

N

∑
α

gBCS(γ − α)gBCS(α− γ′)
)(∫

d3r1 cos
(
ϕ<γ,γ′(r1)

))
.

(B23)

We have essentially recovered the desired form. Define C̃ = A ηC
Λ2v

> 0 for convenience where

A denotes any numerical factors I’ve ignored up until now. Note in our definition of an RG

time, s = e−t where t� 1, we would identify that 1− s = ν = t. The general equation for

the coupling constant flow under RG is then

gBCS(t, γ − γ′)− gBCS(0, γ − γ′) = e(2−2η)t gBCS(0, γ − γ′)

− e(2−2η)tC̃t

∫
dα

2π
gBCS(0, γ − α)gBCS(0, α− γ′) (B24)

Note that I’ve taken N →∞ and turned the sum over α into a product. What is typically

done now is to rewrite the functions gBCS(t, γ) as an infinite sum of harmonics so that we

can turn the convolution into a product. The harmonics are defined as

glBCS =

∫
dγ

2π
cos(lγ) gBCS(γ) (B25)

where l ∈ 2Z due to Bose symmetry. The above equation now takes the form

glBCS(t) = e(2−2η)t
(
glBCS(0)− C̃t

(
glBCS(0)

)2)
. (B26)

Taking the derivative of both sides with respect to t yields

glBCS(t)

dt
= (2− 2η)e(2−2η)t

(
glBCS(0)− C̃t

(
glBCS(0)

)2)− C̃e(2−2η)t
(
glBCS(0)

)2
. (B27)

Now using the definition of glBCS(t), we plug that into the above equation to remove all

dependence of glBCS(0). The resulting equation is then expanded to linear order in t, which

is assumed to be infinitesimal. Discarding terms O(t) yields the beta function for the

harmonics,

dglBCS

dt
= (2− 2η)glBCS − C̃(glBCS)2. (B28)
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Appendix C: Obtaining the Dual Lagrangian

I found it easiest to begin thinking about this by considering a multi-component Luttinger

liquid Hamiltonian,

H =
u

2π

∑
γ,γ′

(
1

K
(∇γφγ)

(
δγ,γ′ + fφγ,γ′

)
(∇γ′φγ′) +K(∇γθγ)

(
δγ,γ′ + f θγ,γ′

)
(∇γ′θγ′)

)
. (C1)

Note that this isn’t intended to be equivalent to L0 – the argument should be general. This

Hamiltonian is of the form

H =
∑
γ,γ′

(
(∇γφγ)M

φ
γ,γ′(∇γ′φγ′) + (∇γθγ)M

θ
γ,γ′(∇γ′θγ′)

)
. (C2)

There are two ways to write out the action [9] depending on which fields we’ll want to

integrate out:

Sφ =

∫ β

0

dτ

∫
d2x

∑
γ,γ′

(
− i 1

π
(∇γθγ)(∂τφγ)δγ,γ′ +H

)
(C3)

Sθ =

∫ β

0

dτ

∫
d2x

∑
γ,γ′

(
i
1

π
(∇γφγ)(∂τθγ)δγ,γ′ +H

)
(C4)

When considering Sφ, as I’ve suggestively defined it, we would naturally want to integrate

out the θγ fields; vice versa for Sθ. In order to do this, we want to complete the square.

Take Sφ as an example. Considering just the relevant terms, we have∑
γ,γ′

(∇γθγ)M
θ
γ,γ′(∇γ′θγ′)−

i

π
(∇γθγ)(∂τφγ′)δγ,γ′ . (C5)

This is an equation of the form xTMx− 2bTx where M = MT is a symmetric matrix. This

can be rewritten as

xTMx− 2bTx = (x−M−1b)TM(x−M−1b)− bTM−1b, (C6)

where we have completed the square. The first term can now be integrated out because,

in the exponentiated action e−S that appears in the path integral, it is a simple Gaussian

integral. The effective action now contains a term coupling ∂τφγ on different patches, and

the matrix connecting these patches is given by (M θ)−1 times some constants (which we

absorbed into our definition of b). Specifically, we find that

Sφ =

∫ β

0

dτ

∫
d2x

(
1

4π2
(∂τφγ)[(M

θ)−1]γ,γ′(∂τφγ′) + (∇γφγ)M
φ
γ,γ′(∇γ′φγ′)

)
(C7)
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Sθ =

∫ β

0

dτ

∫
d2x

(
1

4π2
(∂τθγ)[(M

φ)−1]γ,γ′(∂τθγ′) + (∇γθγ)M
θ
γ,γ′(∇γ′θγ′)

)
(C8)

Given this relationship, it is straightforward to switch between the effective Lagrangian

L0 and the dual Lagrangian by just inverting the matrix coupling each sector (charge or

momentum). The last thing we need to know is a trick given in the paper:(
δγ,γ′ +

1

N
fρ

)−1

= δγ,γ′ −
1

N

fρ
1 + fρ

. (C9)

Given this, the dual Lagrangians are

L[φ] =
kB

4πNη

∑
γγ′

φγ

(
v−1ω2

(
δγγ′ +

1

N
fρ
)
− vkγkγ′

(
δγγ′ +

1

N
fj
))
φγ′ , (C10)

L[θ] =
kBη

4πN

∑
γ,γ′

θγ

(
v−1ω2

(
δγγ′ +

1

N
f̃ρ
)
− vkγkγ′

(
δγγ′ +

1

N
f̃j
))
θγ′ , (C11)

where we define dual Landau parameters

f̃ρ = − fj
1 + fj

f̃j = − fρ
1 + fρ

. (C12)
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