THOMAS G. KIELY

Address:	316 W. Cota St.
	Santa Barbara, CA 93101
Phone:	(973) 508-9076
EMAIL:	thomaskiely@ucsb.edu
PUBLICATIONS:	Google Scholar, ORCID
PERSONAL WEBSITE:	thomas-kiely.github.io

ACADEMIC POSITIONS

To begin Sept. 2024	Moore Postdoctoral Fellow
	Kavli Institute for Theoretical Physics
	Supervisors: Leon Balents & Matthew Fisher
Education	
Aug. 2018 - May 2024	Ph.D. IN Physics
0	Cornell University
Dissertation	Phase Transitions and Transport Properties in Ultracold Atom Quantum Simulators
	Thesis Advisor: Erich Mueller
Aug. 2018 – Mar. 2021	M.S. IN PHYSICS
-	Cornell University
A Exam	Q1, Q2, Q3
Aug. 2014 - May 2018	B.S. IN PHYSICS, B.A. IN ITALIAN, MINOR IN PHILOSOPHY
	Georgetown University
	Summa Cum Laude
Senior Thesis	Quantum Simulators with Trapped Ions: Two Examples
	Thesis Advisor: James Freericks
Aug. 2016 - Dec. 2016	SEMESTER AT University of Bologna
~	Direct Matriculation

Honors and Awards

May 2023	Douglas Fitchen Memorial Award to enable international travel to
	study, pursue research, or partake in Physics-related events
April 2023	DAMOP Travel Award to attend the APS DAMOP 2023 meeting in
	Spokane, Washington
May 2018	Undergraduate Research Award for depth and impact of written and
	oral presentation of undergraduate senior thesis
May 2018	Kidwell Medal for excellence in undergraduate Physics coursework
May 2018	Dante Award for excellence in undergraduate Italian coursework
May 2018	Phi Beta Kappa
April 2013	National Merit Finalist

Research Experience

Aug. 2018 – May 2024	Laboratory of Atomic and Solid State Physics, Cornell University Graduate Research Assistant with Erich Mueller
	 Studied a wide range of problems with applications to quantum simulation with ultracold atoms, including transport and superfluidity in low-dimensions, topology, frustration and long-range interactions. Utilized a combination of analytic and numerical techniques with a particular focus on infinite tensor network methods. Collaborated on problems relevant to strongly-correlated materials, namely Sr₂RuO₄ and van der Waals heterostructures.

Jan. 2015 – May 2018 Georgetown University Undergraduate Research Assistant with James Freericks • Studied two problems with direct relevance to quant

• Studied two problems with direct relevance to quantum simulation with trapped ions.

PUBLICATIONS

- 6. High-temperature transport in the one-dimensional mass-imbalanced Fermi-Hubbard model TGK and Erich J. Mueller Phys. Rev. A 109, 063318 (2024) arXiv:2404.08076
- 5. Role of conservation laws in the density matrix renormalization group TGK and Erich J. Mueller Phys. Rev. B **106**, 235126 (2022) arXiv:2207.03465
- Strong Increase in Ultrasound Attenuation Below T_c in Sr₂RuO₄: Possible Evidence for Domains Sayak Ghosh, TGK, Arkady Shekhter, F. Jerzembeck, N. Kikugawa, Dmitry A. Sokolov, A. P. Mackenzie and B. J. Ramshaw Phys. Rev. B 106, 024520 (2022) arXiv:2109.00041
- 3. Superfluidity in the one-dimensional Bose-Hubbard model TGK and Erich J. Mueller Phys. Rev. B 105, 134502 (2022) arXiv:2202.0066
- Transport in the 2D Fermi-Hubbard Model: Lessons from Weak Coupling TGK and Erich J. Mueller. Phys. Rev. B 104, 165143 (2021) [Editor's Suggestion] arXiv:2106.04479
- Relationship between the transverse-field Ising model and the XY model via the rotating-wave approximation TGK and J. K. Freericks Phys. Rev. A 97, 023611 (2018) arXiv:1711.04386

PRESS ON RESEARCH

Phys. Rev. B 104, 165143 (2021) [Editor's Suggestion]

- "Weak coupling shows flaw in strange metal model" (Cornell Chronicle)
- "Weak coupling shows flaw in strange metal model" (Phys.org)

PREPRINTS

• Continuous Wigner-Mott transition at $\nu = 1/5$ TGK and Debanjan Chowdhury arXiv:2305.13355

TALKS AND POSTERS

- LASSP/AEP Student Seminar, Mar. 21, 2024, Ithaca, NY
 - TGK and Erich J. Mueller. "Transport in Ultracold Atom Quantum Simulators." (Seminar Talk)

KITP Seminar, Dec. 18, 2023, Santa Barbara, CA (Virtual)

• TGK and Erich J. Mueller. "High-Temperature Transport in Fermi-Hubbard systems." (Seminar Talk)

APS DAMOP Meeting, Jun. 5-9, 2023, Spokane, WA

- TGK and Erich J. Mueller. "Transport in the 2D Fermi-Hubbard Model: Lessons from Weak Coupling." (Contributed Talk)
- TGK and Erich J. Mueller. "Transport in the mass-imbalanced 1D Fermi-Hubbard model." (Poster)

International Conference on Atomic Physics, Jul. 18-22, 2022, Toronto, ON

• TGK and Erich J. Mueller. "Transport in the 2D Fermi-Hubbard Model: Lessons from Weak Coupling." (Poster)

APS March Meeting, Mar. 14-18, 2022, Chicago, IL

• TGK and Erich J. Mueller. "Superfluidity in the 1D Bose-Hubbard model." (Poster and Contributed Talk)

Boulder School for Condensed Matter and Materials Physics: Ultracold Matter, Jul. 5-30, 2021, Boulder, CO • **TGK** and Erich J. Mueller. "Superfluidity in the 1D Bose-Hubbard model." (Poster)

ARO/AFOSR MURI Quantum Matter Grant Review, Oct. 15, 2019, Amherst, MA

• TGK and Erich J. Mueller. "Umklapp Scattering gives rise to T-Linear Resistivity in the Hubbard Model." (Poster)

TEACHING EXPERIENCE

Spring 2023	PHYS-2214: PHYSICS III: OSCILLATIONS, WAVES, AND QUANTUM PHYSICS Course Instructor: Glenn Case (Cornell) Lead two discussion sections and a lab section, created weekly quizzes, graded home- work, proctored and graded exams
Fall 2023	PHYS-7653: STATISTICAL PHYSICS II Course Instructor: Chao-Ming Jian (Cornell) Graded and wrote solutions to problem sets
Spring 2022	PHYS-2213: PHYSICS II: ELECTROMAGNETISM Course Instructor: Alan Giambattista (Cornell) Lead three discussion sections and twice weekly office hours, graded homework, proc- tored and graded exams
Fall 2020	PHYS-2213: PHYSICS II: ELECTROMAGNETISM Course Instructor: Ivan Bazarov (Cornell) Course held entirely online; lead three discussion sections and twice weekly office hours, graded homework, proctored and graded exams
Spring 2020	PHYS-1102: GENERAL PHYSICS II Course Instructor: Nick Taylor (Cornell) Staffed a flipped, self-taught classroom for 15hrs per week, set up student-run labs, graded lab notebooks, proctored and graded exams. Taught extensively over Zoom due to COVID
Spring 2019	PHYS-2208: FUNDAMENTALS OF PHYSICS II Course Instructor: Glenn Case (Cornell) Lead two discussion sections and a lab section, created weekly quizzes, graded home- work, proctored and graded exams
Fall 2018	PHYS-1101: GENERAL PHYSICS I Course Instructor: Nick Taylor (Cornell) Staffed a flipped, self-taught classroom for 15hrs per week, set up student-run labs, graded lab notebooks, proctored and graded exams
Fall 2017	PHYS-251: INTERMEDIATE MECHANICS Course Instructor: Peter Olmsted (Georgetown) Held office hours, lead a weekly tutorial, graded problem sets, proctored exams
Fall 2015	PHYS-153: RELATIVITY AND QUANTUM PHYSICS Course Instructor: Joseph Serene (Georgetown) Held office hours, graded problem sets

EXTRACURRICULARS AND OUTREACH

April 2020	Cornell Expanding Your Horizons Conference
	Workshop Co-Leader: "Physics of Bubbles"
Jun. 2019 – May 2020	Cornell Graduate Peer Mentor
Aug. 2014 - May 2018	Georgetown Men's Varsity Lightweight Rowing
Aug. 2014 - May 2018	Georgetown Circolo Italiano
	Treasurer (2017-2018)
June 2015 – Dec. 2015	Georgetown Physics Peer Advisor

TECHNICAL SKILLS

Programming Languages | Python, C++, Julia, Java, Wolfram Language (Mathematica) CAD | SolidWorks

LANGUAGES

English: Native Italian: Fluent (non-Native)