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I. INTRODUCTION

Sound waves in solids are periodic and propagating deformations of the atomic lattice.

The speed of sound is related to the potential energy pulling the atoms back to their equilib-

rium positions. As a sound wave propagates, its amplitude will decay as dissipative processes

transfer energy into heat. We define the attenuation constant of a sound wave, α, as half

the rate of its decay [1]. We can therefore write down a solution to the wave equation,

~u = ~u0 exp

(
iωt− i~q · ~r − 1

2
αq̂ · ~r

)
(1)

where ~u is the velocity of the atoms at position ~r and time t. The sound velocity is given

by the ratio vs = ω/|~q| as sound waves are linearly-dispersing at low energies.

There are a variety of means by which sound can dissipate in a solid, but many of these

have trivial temperature dependences and therefore will not concern us here [1]. The primary

dissipation channels we will consider are electron-phonon scattering and electron-impurity

scattering. In general one can think of these working in tandem to transfer heat from the

wave to an external reservoir, and indeed this is often the way expressions for the sound

attenuation constant are derived [2]. We will consider the problem in a more abstract form,

but it is useful to have this method in mind.

The question we have in mind is how does the ultrasound attenuation constant vary with

temperature across the superconducting transition. The canonical prediction put forth by

BCS in Ref. [3] was one of the first indications of their success in describing superconduc-

tivity. They found that the ultrasound attenuation constant should drop precipitously as

one enters the superconducting state, and this is generally what one finds in s-wave “con-

ventional” superconductors. We will derive this result in Sec. II. This behavior cannot

necessarily be imported into the context of non-s-wave pairing, however. Measurements

some heavy-fermion materials, namely UBe13 and UPt3, have shown a peak in the longitu-

dinal attenuation factor upon crossing Tc [4, 5]. More recently, Brad’s group measured a

similar peak below Tc in Sr2RuO4 [6]. What we will investigate is whether the peak in the

ultrasound attenuation is a signature of a sign-changing (triplet) gap. We will show that the

peak is not a signature of the gap, but it is possible that a triplet gap could lead to such a

peak. We will conclude with an evaluation of an alternative explanation provided by Coffey

in Ref. [7, 8].
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II. S-WAVE ATTENUATION

The first question to ask is what is different about life below Tc. At the mean-field

level, which will be the basis of this discussion, a superconducting gap opens up and the

Hamiltonian is diagonalized by coherent superpositions of single-particle states. The gap

inhibits scattering processes such that, at adequately low temperatures, we would expect

the sound attenuation to decrease exponentially. What happens precisely at the transition,

however, is not yet clear.

Following along with Refs. [3, 9], we will treat the problem of ultrasound attenuation at

the level of Fermi’s golden rule. Thus we will assume that the sound wave can be thought

of as a number-conserving perturbation to the Hamiltonian of the form

Hint =
∑
k1,k2

∑
σ

Mk1,k2c
†
k1,σ

ck2,σ, (2)

and we will simply ask what the total scattering rate is in the system. Note that we will only

treat interactions that do not flip the spin, as that will be adequate for the purpose of ultra-

sound attenuation; the more general spin-dependent problem is discussed in Appendix A.

It will be assumed that this scattering rate is directly proportional to the sound attenuation

constant, α(T ). The statement of Fermi’s golden rule is

Γ(ω, T ) =
2π

~

∫
d3k1

∫
d3k2 |〈Hint〉|2

(
fk1(1− fk2)− fk2(1− fk1)

)
δ(E1 − E2 − ~ω) (3)

where fk is the Fermi-Dirac distribution function. This is intentionally schematic, as the

true nature of this argument is about phase space and interference between quasiparticles.

We will end up dividing by ΓN , the scattering rate in the normal state, to remove arbitrary

constants.

If we had access to the matrix elements Mk1,k2 , we would have enough information to

do this simplified calculation for a normal metal (by “normal metal” I mean that the un-

perturbed Hamiltonian H0 is diagonal in the single-particle basis). The reason is that each

transition in Eq. (2) can be thought of as independent of every other transition. Thus we

just square the matrix element, insert the dispersion for E1/2, and plug and chug. In a

superconductor, however, this is no longer valid. Specifically the unperturbed Hamiltonian

H0 is not diagonal in the basis of ck,σ due to the BCS pairing operator. The BCS mean

field Hamiltonian is diagonal in the basis of Bogoliubov quasiparticles, γk,τ , which are com-

posed of coherent superpositions of ck,σ states. We must therefore rewrite the interaction
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Hamiltonian in the form

Hint =
∑
k1,k2

∑
τ1,τ2

(
Mγ,1

k1,k2
γ†k1,τ1γk2,τ2 +Mγ,2

k1,k2
γ†k1,τ1γ

†
k2,τ2

+ h.c.
)
, (4)

in which case we can treat the matrix elements independently as we would for the normal

metal.

Going from the matrix elements M to Mγ is straightforward because the ck,σ operators

can be written as a superposition of γk,τ operators. Let’s first set up the formalism to do

that. The mean field Hamiltonian reads

HMF =
∑
k,σ

ξkc
†
k,σck,σ −∆

∑
k

(
ck↑c−k,↓ + c†−k,↓ck,↑ + . . .

)
(5)

where we use the standard notation that ξk = εk − µ and the gap ∆ is proportional to the

pairing operator, 〈ck,σc−k,−σ〉 (I’ve ignored constant terms). Naturally the gap must satisfy

a self-consistency condition. We diagonalize HMF with a Bogoliubov transformation

ck,↑ = u∗kγk,0 + vkγ
†
−k,1

c†−k,↓ = −v∗kγk,0 + ukγ
†
−k,1.

(6)

where the coefficients satisfy |uk|2 + |vk|2 = 1. They coefficients are found to be

uk =

√
1

2

(
1 +

ξ2

E2
k

)
vk =

√
1

2

(
1− ξ2

E2
k

)
(7)

and the energy eigenvalue is Ek =
√
ξ2
k + ∆2.

As has been made explicit in Eq. (6), we see that a Bogoliubov quasiparticle is a super-

position of a state at (k, σ) and a state at (−k,−σ). Thus the scattering operator c†k,σck′,σ

connects the same Bogoliubov quasiparticle states as the operator c†−k′,−σc−k,−σ. Further-

more, the quasiparticle scattering terms obtained by expanding these terms will not be

found in any other expansion of single-particle scattering operators. Thus, considering pairs

of scattering operators such as these will allows us to convert from the M to the Mγ matrix

elements.

At this stage, it should be clear that we have to make an assumption about the matrix

elements. Specifically we will assume that Mk,k′ = ±M−k′,−k. This is a reasonably broad

assumption: we are simply assuming that the interaction term is even or odd under time

reversal (technically this would also involve spin – see Appendix A). This creates two
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possible cases we will want to consider. Factoring out the magnitude of the matrix element,

we’ll want to find the sum c†k,σck′,σ +α c†−k′,−σc−k,−σ where α = 1 denotes Case I interactions

and α = −1 denotes Case II interactions (to use the terminology of Ref. [3]). Expanding

the sum, we find

c†k,σck′,σ + α c†−k′,−σc−k,−σ = (uk1uk2 − αvk1vk2)
(
γ†k′,σγk,σ + α γ†−k,−σγ−k′,−σ

)
+ (uk1vk2 + αuk2vk1)

(
γ†k′,σγ

†
−k,−σ + α γ−k′,−σγk,σ

)
(8)

where I’ve adopted the convention used in Ref. [9] for the spin indices on the γ operators.

Note that there is one prefactor for the quasiparticle scattering terms (γ†γ) and another for

the creation/annihilation terms. These prefactors are what we’ll refer to as the coherence

factors. Multiplying the matrix elements M by the coherence factors takes us to the ma-

trix elements Mγ. Physically this corresponds to the fact that an operator which scatters

single electrons will end up scattering multiple Bogoliubov quasiparticles. The quasiparticle

scattering processes can add constructively or destructively, resulting in the two different

coherence factors. We can simplify the coherence factors using the definitions of uk and vk:

(uk1uk2 − αvk1vk2)2 → 1

2

(
1− α ∆2

E1E2

)
(uk1vk2 + αuk2vk1)

2 → 1

2

(
1 + α

∆2

E1E2

)
. (9)

Note in the above that we ignore a term proportional ξ1ξ2/E1E2 in both coherence factors

because it will integrate to zero (ξ(k) has been linearized about the Fermi surface, so it is

an odd function over our range of integration).

In principle the decay rate Γ, defined in Eq. (3), is a function of both frequency and

temperature. The sound attenuation coefficient is related to the ω → 0 limit of Γ(ω, T ), so

that is the limit we will consider. In order to get a new Fermi’s golden rule expression for

Γ, we are now taking the expectation value of Hint with respect to the mean-field ground

state. This means that we will have both scattering terms and creation/annihilation terms

to consider. These contributions differ in their coherence factors and in the product of Fermi

factors that accompany them:

Γ(ω, T ) =

∫ ∞
−∞

dE1 dE2

(
|M |2Ns(E1)Ns(E2)

(
1−α ∆2

E1E2

)(
f(E1)−f(E2)

)
δ(E1−E2−~ω)

+ |M |2Ns(E1)Ns(E2)

(
1 + α

∆2

E1E2

)(
1− f(E1)− f(E2)

)
δ(E1 + E2 + ~ω)

)
(10)

There is an additional subtlety here. As we are considering scattering processes in the

limit ω → 0, certain scattering processes will not contribute. These can be thought of
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as processes that connect quasiparticle states above and below the superconducting gap,

as they would require ~ω > 2∆. We therefore only consider scattering processes where

sign(E1) = sign(E2) and creation/annihilation processes where sign(E1) = −sign(E2). These

correspond to the first and second terms in Eq. (10), respectively. The density of states is

Ns(E) = N(0)|E|/
√
E2 −∆2 is zero for |E| < ∆, and N(0) is the electron density of states

at the Fermi level. We can actually combine the two terms in Eq. (10) by taking E1 > 0 and

making the sign of E2 explicit. This simplification was pointed out by BCS in a footnote in

their original paper [3]. Evaluating the delta functions, and noting 1− f(−E) = f(E), then

yields

Γ(ω, T ) =

∫ ∞
∆

dE Ns(E)Ns(E + ~ω)|M |2
(

1− α ∆2

E(E + ~ω)

)(
f(E)− f(E + ~ω)

)
(11)

where we ignore constant prefactors. The prefactors will be irrelevant because we will take

|M |2 to be a constant and divide the result of Eq. (11) by the normal state value of the

scattering rate,

ΓN(ω, T ) = N(0)2|M |2
∫ ∞

0

dE
(
f(E)− f(E + ~ω)

)
→ ~ω

2
N(0)2|M |2, (12)

where in the last line we took the small-ω limit.

We’re now in a position to assess the temperature dependence of the two cases. The

temperature dependence of the gap is given by ∆(T ) = ∆0

√
1− T/Tc [9], but the specific

temperature dependence will not concern us here.

1. For a Case I process we take α = 1, which is to say that the interaction is time-reversal

invariant. As ω → 0 we can see that the coherence factor vanishes as E → ∆, which is

exactly where the density of states diverges. The product of these terms is no longer

peaked at E = ∆. Thus, destructive interference between quasiparticles negates the

diverging density of states near the superconducting gap. As we cross the transition

temperature the lower bound of the integral increases from zero, resulting in a sharp

decrease in the scattering rate. This is shown in Fig. 1.

2. For a Case II process, α = −1 and the interaction breaks time-reversal symmetry. Now

we have constructive interference where we previously had destructive interference.

When the gap opens up, the density of states near ∆ diverges and the scattering rate

increases. Γ reaches a peak at some finite temperature and then decrease exponentially

6



FIG. 1. Plot of the ratio of the superconducting scattering rate to the normal state scattering rate,

Γs/ΓN , as a function of temperature across the superconducting transition. Both cases are shown,

as well as the result if interference terms were neglected. A cutoff above ∆ was used to obtain

finite results for the latter two curves, so the height and width of the peaks is somewhat arbitrary.

as T → 0 and scattering processes are gapped out. It’s worth noting that the Case

II integral is actually formally infinite due to the divergence as E → ∆, so one must

either use a phenomenological cutoff or assume that the density of states is disorder-

broadened to obtain finite results [9].

In the context of these results, longitudinal sound attenuation is the archetypal Case

I process. The electron-phonon and (non-magnetic) electron-impurity scattering processes

responsible for sound attenuation are spin-independent and time-reversal symmetric [2].

Transverse sound attenuation can involve more complicated processes that we do not con-

sider here. The success of this simple calculation in describing the sharp decrease in ultra-

sonic attenuation was one of the early successes of BCS theory [3, 10]. The peak seen in

Case II processes has also been verified experimentally, and in the context of nuclear spin

relaxation it is referred to as the Hebel-Slichter peak [11].

7



III. P-WAVE ATTENUATION

S-wave superconductivity involved pairing states at (k, σ) and (−k,−σ) in a spin singlet.

This is to say, if one were to decompose the expectation value of the pairing operator into

a spin and momentum component, the spin component was antisymmetric:

bkσ,σ′ = 〈ck,σc−k,σ′〉 = φ(k)χσ,σ′ (13)

with χσ,σ′ = −χσ′,σ and φ(k) a constant. This need not be the case, however. The relation

bkσ,σ′ = −b−kσ′,σ must hold due to anticommutation relations, but that can also be satisfied

with a symmetric function χσ,σ′ and an orbital function that changes sign, φ(k) = −φ(−k)

(as well as other spin singlet arrangements with higher angular momentum). We’ll now

generalize the above formalism to include triplet pairing states. The gap function is defined

as

∆k
σ,σ′ = −

∑
k′

∑
τ,τ ′

V k,k′

σ,σ′,τ,τ ′b
k′

τ,τ ′ (14)

where V is the interaction in the BCS pairing channel. We will not concern ourselves with

the details of the interaction, presuming instead that the momentum and spin dependence

of the gap is known. The gap has two spin-1/2 indices and can therefore be expressed as a

2× 2 matrix in spin space:

∆̂k =

∆↑↑k ∆↑↓k

∆↓↑k ∆↓↓k

 . (15)

Given this form, we’ll express the gap matrix as a product of Pauli matrices. The gap is

generally characterized by the vector ~d(k), in terms of which ∆̂k = i(~d(k) · ~̂σ)σ̂y. The mean-

field Hamiltonian can be expressed in terms of the gap, as in Eq. (5), and diagonalized by

a Bogoliubov transformation. Again we define Bogoliubov quasiparticles that are related to

the electon and hole states by
ck,↑

ck,↓

c†−k,↑

c†−k,−↓

 =

 ûk v̂k

v̂∗−k û∗−k




γk,↑

γk,↓

γ†−k,↑

γ†−k,−↓

 . (16)

The parameters in the unitary transformation are themselves matrices in spin space,

ûk =
Ek + ξk√

2Ek(Ek + ξk)
σ̂0 v̂k =

−∆̂k√
2Ek(Ek + ξk)

, (17)
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where we define Ek =
√
ξk + |∆k|2 and |∆k|2 = 1

2
Tr∆̂k∆̂

†
k. Note that we have assumed a

unitary gap in the above, which means ∆̂k∆̂
†
k ∝ σ̂0.

Given this formalism, it is straightforward to pick different triplet pairing states and

extract the coherence factors. The most general triplet pairing state will have ~d(k) =

dx(k)x̂ + dy(k)ŷ + dz(k)ẑ where each component of ~d can be complex (of course, not all

of these choices make for unitary gaps). The direction d̂ corresponds to different pairing

functions χσ,σ′ and the magnitude of |~d(~k)| is the magnitude of the gap at momentum ~k

(which is presumed to lie on the Fermi surface). We can then solve the problem generally

via the Bogoliubov transformation
ck,↑

ck,↓

c†−k,↑

c†−k,−↓

 ∝


Ek + ξk 0 dx(k)− idy(k) −dz(k)

0 Ek + ξk −dz(k) −dx(k)− idy(k)

−d∗x(k)− id∗y(k) d∗z(k) Ek + ξk 0

d∗z(k) d∗x(k)− id∗y(k) 0 Ek + ξk




γk,↑

γk,↓

γ†−k,↑

γ†−k,−↓

 .

(18)

where I omitted the normalization factor of 1/
√

2Ek(Ek + ξk).

Clearly one can dream up some very complicated pairing states for arbitrary choices of

~d. We are, however, looking to answer a specific question: is the peak in the ultrasound

attenuation a signature of a sign-changing gap? To answer this question it will suffice to

choose a simple example. I’ll consider generic terms in which ~d lies along one of the Cartesian

coordinate axes: d̂ = dµ(k)µ̂ where µ ∈ (x, y, z). All of these choices produce unitary

gaps, so we will take dµ(k) to be a complex-valued function of ~k and decompose it into an

amplitude and a phase, dµ(k) = |dµ(k)|eiφ(k). In order to proceed with the calculation, we

make the same assumption that the interaction is written in the form of Eq. (2) and obeys

Mk,k′ = αM−k′,−k where α = ±1. An additional complication in the case of triplet pairing

is that the electron states that are coupled are not necessarily (k, σ) and (−k,−σ); for

example, picking µ = x, y couples (k, σ) and (−k, σ) instead. This is summarized in the first

two columns of Table I. In each case we add the two scattering states that connect the same

Bogoliubov quasiparticle states, c†k,σck′,σ +α c†−k′,±σc−k,±σ, with α = ±1 again distinguishing

Case I and Case II processes (and ±σ is σ for µ = z and −σ for µ = x, y). It’s worth noting

here that Cases I and II no longer necessarily correspond to parity under time reversal due

to the complications associated with spin flipping. By choosing an interaction Hamiltonian

that does not flip spins, however, the Case I/II conditions for the s-wave superconductor
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d̂ Spin Pairing γ†γ, σ = σ′ γγ, σ = σ′ γ†γ, σ 6= σ′ γγ, σ 6= σ′

x̂ | ↑↑〉 − | ↓↓〉 − + − +

ŷ | ↑↑〉+ | ↓↓〉 − − + +

ẑ | ↑↓〉+ | ↓↑〉 − + + −

singlet | ↑↓〉 − | ↓↑〉 − + − +

TABLE I. Signs of the coherence factors for various terms in the p-wave expansion with d̂ = dµ(k)µ̂.

The entries ± correspond to the different coherence factors in Eq. (19) and not to the values of α.

The heading γ†γ denotes quasiparticle scattering terms and γγ denotes creation and annihilation

terms; σ 6= σ′ and σ = σ denote matrix elements with and without a spin flip, respectively (see

Appendix A). The results of singlet pairing are included below for comparison.

map directly on to the Case I/II conditions for the p-wave superconductor.

Expanding these terms in the Bogoliubov basis, we find that the coherence factors all

take the form

F±µ (k, k′;α) = 1± α |dµ(k)||dµ(k′)|
EkEk′

cos
(
φ(k)− φ(k′)

)
, (19)

which clearly generalizes Eq. (9). The results of the calculation are summarized in Table I,

where + denotes the use of F+
µ (k, k′;α) and − denotes the use of F−µ (k, k′;α). Only the

first two columns are of use to us as they pertain to matrix elements that do not flip the

spin (σ = σ′). The sign conventions of the singlet case are included in the last row for

comparison.

Interestingly, we find that choosing ~d to be along the x and z axes produces analogous

coherence factors to the singlet case, but ~d along the y axis gives creation and annihilation

(γγ) processes the same coherence factor as scattering (γ†γ) processes. We can therefore say

confidently that the peak in the density of states is not a signature of a sign-changing gap,

at least not at the level of this analysis. With that said, certain p-wave gaps may disrupt

the exact Case I cancellation between the coherence factor and density of states that was

seen for s-wave superconductors.

While it may now be tempting to reproduce the calculation for much more complicated

triplet pairing states, we can see on the basis of this simple calculation alone that the results
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will not paint a clear picture. We will therefore ask another somewhat restrained question:

Can this mismatch of coherence factors for d̂ = ŷ actually produce a peak in the sound

attenuation constant? Given that the coherence factors were not altogether reversed, it is

worth asking whether this effect is strong enough to produce a peak. Furthermore, a p-wave

gap may have nodes that would decrease the peak in the density of states near the gap edge,

further diminishing any potential peak. To answer this question we have to be more specific

about the form of ~d. I will assume the simple form

~d(k) = ∆0

(
ẑ · ~k
kF

)
ŷ (20)

where we are assuming all momenta are close to the Fermi surface so |~k| = kF . This gap

has a line of nodes where kz = 0. We now have to perform an angular average within the

Fermi’s golden rule calculation as the gap is a function of ẑ · ~k. Analogous to Eq. (10), we

have

Γ(ω, T ) =

∫ ∞
−∞

dE1 dE2

∫
dΩ1dΩ2

(4π)2
|M |2Ns(E1,Ω1)Ns(E2,Ω2)×(

F−(E1, E2,Ω1,Ω2;α)
(
f(E1)− f(E2)

)
δ(E1 − E2 − ~ω)

+ F−(E1, E2,Ω1,Ω2;α)
(
1− f(E1)− f(E2)

)
δ(E1 + E2 + ~ω)

)
(21)

where Ω1 and Ω2 are the solid angles for the momenta k and k′, respectively (the radial

component has been transformed into E1/2). The density of states is given by

Ns(E,Ω) = Ns(E, θ, φ) = N(0)
|E|√

E2 −∆2
0 cos2(θ)

(22)

and the coherence factors are

F±(E1, E2,Ω1,Ω2;α) =
1

2

(
1± α∆2

0| cos(θ1) cos(θ2)|
E1E2

)
. (23)

We now want to integrate over both solid angles. Before doing that, however, we can

integrate over E2 and make the signs of E1 and E2 explicit. This is what gave us Eq. (11)

from Eq. (10). For the first term of Eq. (21) we take E1 > 0 and E2 > 0, and for the second

term we take E1 > 0 and E2 < 0. In the s-wave case these were the only terms that would

survive as ω → 0. In this case, however, the gap has nodes and therefore the density of

states does not vanish until E = 0. We may therefore have to worry about the pair-breaking
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FIG. 2. Plot of the scattering rate for a py-gap superconductor (“No Interference”) as well as the

standard Case I scattering rate, which would be valid for px and pz-gap superconductors.

processes we neglected earlier. I argue that these are irrelevant in Appendix B; here we will

proceed to ignore them. Inserting the explicit sign conventions, we have

Γ(ω, T ) =

∫ ∞
0

dE

∫
dΩ1dΩ2

(4π)2
|M |2Ns(E,Ω1)Ns(E + ~ω,Ω2)

(
f(E)− f(E + ~ω)

)
. (24)

Interestingly, we find that the coherence factors cancel. With this simplification, we can

perform the angular averages over each function Ns(E,Ω) independently, obtaining the

well-known result

Ns(E) =


π
2
(|E|/∆0) |E| < ∆0

(|E|/∆0) arcsin
(
∆0/|E|

)
|E| ≥ ∆0.

(25)

Expanding in the limit of small ω then gives

Γ(ω, T ) ≈ βω

∫ ∞
0

dE
(
Ns(E)

)2 eβE

(1 + eβE)2
(26)

The result, evaluated numerically, is shown in Fig. 2 (again we have divided by ΓN , which

is defined in Eq. (12). Note that there is a peak, although it is significantly less pronounced

than the s-wave Hebel-Slichter peak in Fig. 1 or the observed peak in Sr2RuO4 [6].

We have shown that a peak in the ultrasound attenuation can arise due to a sign-changing

gap, although this is not a signature of sign-changing gaps in general. At this point it’s worth
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stepping back and reviewing the reasonableness of this proposed explanation for the peak in

Sr2RuO4. This calculation finds an increase in the scattering rate due to the large density

of states near the gap. This is a rather spectacular effect in fully-gapped superconductors,

which have very large peaks in the density of states as E → ∆. The presence of nodes in the

gap decreases this peak in the density of states, however, which is why the curve in Fig. 2

has a smaller peak than the “No Interference” curve in Fig. 1. While much is uncertain

about the structure of the gap in Sr2RuO4, there is good evidence that it has nodes [12–16].

Furthermore, p-wave superconductors are not subject to Anderson’s theorem [17] and are

therefore subject to pair-breaking from non-magnetic impurity scattering. It has been shown

that this impurity scattering can strongly renormalize the density of states, broadening peaks

and increasing spectral weight at low energies [18]. Indeed, it has already been shown that

the resistivity of Sr2RuO4 is sensitive to non-magnetic impurity scattering and that the

decrease in the effective Tc with the scattering lifetime is in line with the predictions of

Abrikosov-Gorkov theory [19]. Collectively, these observations weaken the case for a simple

density of states explanation for the peak in sound attenuation of Sr2RuO4 as the peak

would likely be smaller and significantly less sharp than the experimental observations [6].

IV. ALTERNATIVE EXPLANATION

I will now briefly assess the applicability of an alternative explanation for the peak in

ultrasound attenuation. The proposal derives from a numerical investigation by Coffey [7]

which sought to explain the peak in the attenuation constants of heavy-fermion supercon-

ductors such as UBe13 and UPt3. The method for calculating the ultrasound attenuation

was put forth in an earlier paper by Tsuneto [20], although a simpler version applicable to

normal metals is derived in Kittel [2]. The essential idea is that a sound wave propagating

through a material displaces impurities and creates a long-range electric field due to the

motion of the ions. Both of these effects are treated as perturbations. Given that the total

electric field in the material is sourced by and gives rise to the electron current, ~j and ~E

satisfy a self-consistency equation due to Maxwell’s equations in materials. Finally, one can

use the fact that the total energy released by the electrons through impurity scattering (in

the form of Joule heating, ~j · ~E) is equal to the energy lost by the sound wave. This gives

us the relation α = Re(~j · ~E)/ρvs|~u|2, where ρ is the ion density, vs is the sound velocity and
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|~u| is the magnitude of the velocity field (c.f. Eq. (1)).

Needless to say, this can be a messy calculation in a superconductor. For that reason,

I won’t go into too many details. In general, it should be understood that the calculation

includes the phase space effects discussed earlier as well as disorder-renormalization of the

density of states. Furthermore, it is likely that this more sophisticated treatment of impurity

and phonon scattering has other sources of temperature dependence beyond the scope of

our analysis.

With all that being said, Coffey proposes in a later paper [8] that the origin of the peak

is due to the anomalously large effective mass. The explanation he provides is technical and

rather unintuitive, but it provides a benchmark to test the applicability of his numerical

results to the Sr2RuO4 experiment. The role of the large effective mass, per Coffey, is to

suppress the Fermi velocity (via the relation m∗vF = ~kF , presuming reasonable values for

kF ). Thus, the anomalous ratio Coffey actually identifies is vs/vF , the ratio of the sound

velocity to the Fermi velocity (this is equal to ωτ/ql where ω = vsq is the dispersion of the

sound wave, l is the mean free path, and τ is the scattering lifetime). His simulations use

the ratio vs/vF = 2/3, whereas a more conventional value would be on the order of 10−2.

In Sr2RuO4 there are three Fermi surfaces, each with a Fermi velocity of approximately 1×

10−5 m/s [21]. The sound velocity of each shear and compression mode can be inferred from

their respective elastic moduli, C, and the mass density, ρ, via v =
√
C/ρ; from the values

in Ref. [22] we find a sound velocity of around 5000 m/s for the modes in question. This

gives us a characteristic ratio vs/vF ≈ 0.05, which is reasonably close to the “conventional

value” and significantly less than 2/3.

We cannot, however, definitively rule out Coffey’s mechanism for the peak. Fig. 3, repro-

duced from Ref. [7], shows that the ultrasound attenuation of the polar state (|~d| ∝ kz/kF )

with vs/vF = 0.02 has a peak below Tc. It is hard to discern whether this feature is actually

due to the effective mass mechanism he provides, however, as the plot shows strong disorder

renormalization: a slow rise below Tc followed by a long plateau down to T = 0. This differs

significantly from his other plots, which is sensible because the disorder parameter is much

larger in Fig. 3. Disorder renormalization of the density of states is controlled by Γ/∆0

where Γ is the scattering rate. For the data in question, Coffey chose Γ/∆0 = 2/3; values of

order 1 or larger will strongly renormalize the density of states, broadening any peaks and

filling in spectral weight down to E = 0 [18]. Indeed, the long plateau of Fig. 3 coupled with
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FIG. 3. Ultrasound attenuation as a function of temperature for vs/vF = 0.02 and Γ/∆0 = 2/3,

reproduced from Fig. 10 of Ref. [8]

a finite ultrasound attenuation at T = 0 would indicate that disorder is a significant factor

in this result.

Whether the disorder is responsible for the peak itself is less clear. Qualitatively the

shape of the peak in Fig. 3 differs significantly from that observed in Ref. [6]; the latter is a

sharper, step-like increase. With that said, it is worth noting that the Sr2RuO4 experiment

is in a short-lifetime regime: inferring a BCS gap magnitude of ∆0 ∼ 0.2 meV from Tc [6]

and a scattering rate of approximately 1 ps [21] gives a ratio Γ/∆0 ≈ 3. Finally, while the

step-like increase is inconsistent with Fig. 3, other strong-disorder plots such as Fig. 9 of

Ref. [7] seem to capture the qualitative features of the experimental peak.

V. CONCLUSIONS

Here we investigated the question of whether a peak in the ultrasound attenuation con-

stant below Tc is indicative of a superconductor with a sign-changing gap. After discussion

of the s-wave case, we found that the peak is not a feature of all triplet pairing states. With

that said, we did determine that ~d ∝ ŷ exhibits a cancellation of coherence factors and

a resulting peak below Tc. We then discussed a few reasons why this peak is small and,

given features of the experiment, why this method is unlikely to describe the peak. Finally,

we compared experimental parameters to an existing numerical result that predicts a peak
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in the sound attenuation. While the ratio vs/vF assumes conventional values in Sr2RuO4,

undercutting the relevance of this analysis, we cannot conclusively rule out this mechanism.

Appendix A: Worrying About Spin

If one were instead to consider an interaction Hamiltonian with matrix elements that

could flip spins, such as

Hint

∑
k1,k2

∑
σ1,σ2

Mk1,σ1;k2,σ2c
†
k1,σ1

ck2,σ2 , (A1)

the situation gets a bit more complicated. I relegated this discussion to an appendix because

it adds unnecessary complication to the interactions relevant for ultrasound attenuation.

First consider the s-wave gap. I’ll use the notation for the generalized BCS theory (en-

compassing non-s-wave gaps) throughout. In that language, spin singlet gaps are defined

as ∆̂k = iψ(k)σ̂y and an isotropic s-wave gap has ψ(k) = ∆, a constant. The Bogoliubov

transformation diagonalizing the mean-field Hamiltonian is
ck,↑

ck,↓

c†−k,↑

c†−k,−↓

 ∝

Ek + ξk 0 0 −∆

0 Ek + ξk ∆ 0

0 −∆ Ek + ξk 0

∆ 0 0 Ek + ξk




γk,↑

γk,↓

γ†−k,↑

γ†−k,−↓

 . (A2)

where I again omit the normalization factor of 1/
√

2Ek(Ek + ξk). In order for this phase

space argument to be sensible, we must have

Mk1,σ1;k2,σ2 = α M−k2,−σ2;−k1,−σ1 (A3)

where again α = ±1 differentiates Cases I and II. This condition means that the interaction

is even or odd under time reversal, as mentioned in the main text. As a check we reproduce

the calculation performed previously for σ1 = σ2, finding

c†k1,↑ck2,↑ + α c†−k2,↓c−k1,↓ =
1

2

(
1− α ∆2

E1E2

)
(γ†k1,↑γk2,↑ + α γ†−k2,↓γ−k1,↓)

+
1

2

(
1 + α

∆2

E1E2

)
(γ†k1,↑γ

†
−k2,↓ + α γ−k1,↓γk2,↑) (A4)

where I simplified the coherence factors as before. Note, however, that the situation differs
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when one considers a spin-flipping interaction term:

c†k1,↑ck2,↓ + α c†−k2,↑c−k1,↓ =
1

2

(
1 + α

∆2

E1E2

)
(γ†k1,↑γk2,↓ + α γ†k2,↑γ−k1,↓)

+
1

2

(
1− α ∆2

E1E2

)
(γ†k1,↑γ

†
−k2,↑ + α γ−k1,↓γk2,↓). (A5)

The coherence factors are reversed! The problem, addressed in Schrieffer [23], is that we

also should have inverted the α signs when considering a spin-flip process. For example,

consider the interaction Hamiltonian for NMR:

HNMR = A
∑
k,k′

a∗kak′
(
Iz(c

†
k,↑ck′,↑ − c

†
k,↓ck′,↓) + I+c

†
k,↓ck′,↑ + I−c

†
k,↑ck′,↓

)
(A6)

where the product a∗k′ak comes from the Bloch functions (and is complex conjugated under

k → −k) and I is the nuclear magnetic spin. The key here is that time reversal takes

c†k↑ck′,↑ → c†−k′,↓c−k,↓

c†k,↑ck′,↓ → c†−k′,↑c−k,↓
(A7)

For the first term, time reversal connects scattering between two spin-up particles and

scattering between two spin-down particles. As these feel interactions of the opposite sign,

we would subtract them to get the coherence factors. In the second term, however, we see

that the σ+ operation (creating a spin up and destroying a spin down) maps to another σ+

under time reversal. Thus these terms would add for this Case II process. Conversely, for

a Case I process we would add matrix elements that don’t flip a spin and subtract those

that do. We would therefore find, as stated in the main text, that the coherence factor for

scattering processes is (1−α∆2/E1E2)/2 and the coherence factor for creation/annihilation

processes is (1 + α∆2/E1E2)/2 [9, 23].

For the p-wave case, we must address the additional complication that the definitions

of Cases I and II differ depending on the particular triplet spin pairing state. This is the

primary reason for ignoring them in the main text. The definitions of α for each cardinal

direction of ~d are summarized in Table II. This is a necessary accompaniment to the two

rightmost columns of Table I as the definitions of α are implicit in those. For d̂ = ẑ, the

Bogoliubov transformation pairs the same two electronic states as the singlet Bogoliubov

17



d̂ Spin Pairing Condition

x̂ | ↑↑〉 − | ↓↓〉 Mk,σ;k′,σ′ = α M−k′,σ′;−k,σ

ŷ | ↑↑〉+ | ↓↓〉 Mk,σ;k′,σ′ = α M−k′,σ′;−k,σ

ẑ | ↑↓〉+ | ↓↑〉 Mk,σ;k′,σ′ = α M−k′,−σ′;−k,−σ

singlet | ↑↓〉 − | ↓↑〉 Mk,σ;k′,σ′ = α M−k′,−σ′;−k,−σ

TABLE II. Summary of the definitions of α for different triplet pairing states, which sets the

condition for Case I (α = 1) and Case II (α = −1) processes. Also shown is the pairing in spin

space.

transformation, so the condition is identical to the singlet case. For d̂ = x̂ or ŷ, however,

the Bogoliubov transformation couples states (k, σ) and (−k, σ). This means the definition

of Case I and II processes must differ in these cases. Choosing ~d not along a particular

axis would complicate things even further. We will ignore more complicated configurations

because, in the end, the phase space argument made above would only really apply in

the case of spin-independent interactions [24]. We can see this by considering the NMR

Hamiltonian for a superconducting gap with d̂ = ŷ. For this argument to apply, we would

want the matrix elements Mk,σ;k′,σ′ and M−k′,σ′;−k,σ to differ at most by a sign. This is clearly

the case when σ = σ′. Considering that term alone would indicate that we might have an

α = 1 (Case I) process, which would be a simple reversal of the s-wave sign convention. The

problem is that the two spin flip terms that are coupled by the Bogoliubov transformation,

c†k,↑ck′,↓ and c†−k′,↓c−k,↑, would couple to I− and I+, respectively, so their associated matrix

elements would generically have different magnitudes. The phase space argument would

therefore not apply at all to NMR if d̂ = ŷ (or, more generally, if ~d has any component in

the x-y plane). We are fortunate that the problem at hand, (assumed to be) mediated by

scattering processes that do not flip the electron spin, can be explained rather cleanly by

ignoring all σ dependence in the matrix elements. In that case, the definitions of α can be

considered to be the same for generic ~d and for the singlet case, as discussed in the main

text.
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Appendix B: Pair Breaking

One available explanation for the peak behavior is pair breaking, which corresponds to

the processes neglected in Eq. (11). Specifically these are scattering processes (constrained

by δ(E1 −E2 + ~ω)) where sign(E1) = −sign(E2) and creation/annihilation processes (con-

strained by δ(E1 + E2 − ~ω)) where sign(E1) = sign(E2). The reason for neglecting them

in the s-wave superconductor is that they only exist for |~ω| > 2∆ as the density of states

vanishes for E < ∆. A superconductor with nodes, however, has a finite density of states

down to E = 0 (albeit in particular directions). Thus there should be some amplitude for

pair breaking no matter the size of ∆(T ), which one might think would produce a peak in

the ultrasound attenuation on its own. Implicit in this discussion is the recognition that

these processes would have coherence factors of the opposite sign in the s-wave case (and,

more importantly, for the px and pz gaps), thereby producing Hebel-Slichter-like peaks even

for Case I interactions.

The purpose of this section is to assuage those fears. I will compute the scattering

rate Γs/ΓN for a p-wave superconductor where ~d ∝ ~x and |~d| = ∆0kz/kF . This gap is a

particularly simple choice but it is also illustrative – it has a line node on the surface kz = 0,

which means the density of states has substantial support for |E| < ∆0. We will again take

our integral over only positive energies and insert the signs explicitly. Note that the sign

restrictions for these processes, in combination with the delta function constraints, implies

that |~ω| = |E2|+ |E1|. Thus, after evaluating the delta function, the final integral will have

bounds from [0, ω). Collecting terms, we have

Γ(2)(ω, T ) ≈
∫ ω

0

dE

∫
dΩ1dΩ2 Ns(E,Ω1)Ns(E + ~ω,Ω2)|M |2F+(E,E + ~ω,Ω1,Ω2;α)

×
(
f(E)(1− f(E + ~ω))− f(E + ~ω)(1− f(E))

)
. (B1)

I’ve included angular integrals over the solid angle Ω1/2 to account for the fact that the gap is

a function of the direction of ~k. As before, we have |~d(k)| = ∆0 cos(θ) where θ ∈ [0, π) is the

polar angle. Note that this integral vanishes as ω → 0: pair breaking should be understood

as a finite-ω effect. I evaluate this integral numerically for fixed ω and add it to the integral

in Eq. (21) (taking the second coherence factor to be F+ to account for the fact that it is a

px gap). The result, divided by the result in the normal state, is plotted in Fig. 4. As one

might expect, the peak is small, sharp, and only occurs when ∆(T ) ∼ ω. I’ve chosen two
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FIG. 4. Plot of the Case I superconducting scattering rate over the normal scattering rate versus

temperature for ~d(k) = ∆0kz ẑ/kF . The different curves are for different frequencies, ω, and we have

included pair-breaking processes in the calculation. Grid lines show ∆(T ) = ω for the two finite

frequencies. We use the BCS s-wave form of the temperature dependence, ∆(T ) = ∆0

√
1− T/Tc.

values that allow us to visualize the peak and included vertical lines at the points ∆(T ) = ω.

In Ref. [6] the authors estimate this transition point using ∆0 = 0.2 meV and their applied

frequency of 2 MHz, finding that the crossover for a BCS temperature dependence would be

on the order of a nanokelvin below Tc. This is consistent with Figure 4 and demonstrates

that pair breaking, even with a finite density of states down to E = 0, is not sufficient to

explain the observed peak. Furthermore, given that the effect vanishes in the ω → 0 limit,

we are justified in ignoring such terms for conventional applications.
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