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High-temperature transport in the one-dimensional mass-imbalanced Fermi-Hubbard model
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We study transport in the one-dimensional mass-imbalanced Fermi-Hubbard model in the high-temperature
limit, focusing on the case of strong interactions. Prior theoretical and experimental investigations have revealed
unconventionally long transport timescales, with complications due to strong finite-size effects. We compute the
dynamical current-current correlation function directly in the thermodynamic limit using infinite tensor network
techniques. We show that transport in the strong-imbalance limit is dominated by AC resonances, which we
compute with an analytic expansion. We study the dephasing of these resonances with mass imbalance, η. In
the small-imbalance limit, the model is nearly integrable. We connect these unusual limits by computing the
DC conductivity and transport decay time as a function of η and the interaction strength U/t . We propose an
experimental protocol to measure these correlation functions in cold atom experiments.
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I. INTRODUCTION

The one-dimensional (1D) mass-imbalanced Fermi-
Hubbard model, where ↑-spin particles hop more easily than
↓ spins, interpolates between two interesting limits. When
the masses are equal the system is integrable. When the mass
ratio diverges the heavy particles act as stationary disorder,
localizing the light particles. In neither of these limits does
the system have typical metallic behavior. Between them
the system is nonintegrable and should display conventional
metallic behavior, but it is challenging to calculate the
conductivity when the interactions are strong. In this paper we
use infinite tensor network methods and analytic expansions
to study the high-temperature optical conductivity of this
model.

In a conventional (nonintegrable) metallic system, the zero-
temperature charge conductivity exhibits a zero-frequency
δ-function peak whose area is the Drude weight [1]. At any
temperature T > 0, scattering processes broaden this peak,
and the Drude weight vanishes. Instead, the conductivity
at frequency ω has the approximate Drude form σ (ω) =
σDC/(1 − iωτ ) with a transport scattering time τ , and DC
conductivity σDC. Integrable systems are characterized by an
infinite number of conserved quantities, and consequently
violate this simple picture [2]. For example, the ordinary
(mass-balanced) 1D Fermi-Hubbard model exhibits a finite
Drude weight at all temperatures so long as the total charge
density n̄ is not unity [3]. This feature corresponds to an
infinite DC conductivity, which in higher dimensions is only
seen in superfluids or zero-temperature metals. At half filling
(n̄ = 1), the Drude weight vanishes but the high-temperature
transport is still unconventional, displaying a Kardar-Parisi-
Zhang (KPZ) dynamical scaling [4–8] which has recently
been attributed to a non-Abelian SO(4) symmetry [9].

The limit of strong mass imbalance also displays unusual
transport. When the heavy-particle hopping vanishes, local
heavy-particle densities are constants of motion, and hence the
system is integrable. This integrable limit has vastly different

properties than the symmetric-mass limit. The static heavy
particles act as disorder, leading to Anderson localization of
the light particles [10]. In one dimension this localization oc-
curs for any nonzero interaction strength. In a compelling but
incorrect argument, it was proposed that analogous physics
might be found if the heavy particles were allowed to hop,
leading to many-body localization in a translationally in-
variant system [11–13]. Subsequent work, however, provided
evidence that the model is ergodic for any finite mass ratio
and interaction strength [14–17]. Nonetheless, the system dis-
plays “anomalously long” decay times [18,19], and there is a
timescale over which the behavior appears nondiffusive. One
essential feature is that the long-time limit (τ → ∞) does
not commute with the thermodynamic limit (L → ∞), and
results from finite-size numerics are only reliable for short
times. In our numerical calculations, we leverage tensor net-
work techniques to study transport properties directly in the
thermodynamic limit, circumventing this challenge.

Ultracold atom experiments have recently realized the
mass-imbalanced Fermi Hubbard model [20]. Fermionic
ytterbium atoms are trapped in a two-dimensional (2D)
near-resonant optical lattice. Due to the spin-dependent AC
polarizability, atoms with different internal states see lattices
of different depths, and hence have different effective masses
[21]. The mass ratio depends on the frequency of the lat-
tice lasers and approaches unity for a far-detuned lattice.
Such state-dependent lattices have also been realized using
fermionic strontium [22] and potassium [23] atoms as well
as bosonic rubidium [24]. Interactions are tuned by a Fesh-
bach resonance [25,26]. In these experiments, conventional
transport observables (e.g., DC resistivity) are not easily ac-
cessible. Instead, transport is studied by introducing spin or
charge deformations and observing their relaxation [20,27–
30]. We propose and model a technique to extract the current-
current correlation function from the dynamical response to a
probe.

In Sec. II, we introduce the mass-imbalanced Fermi-
Hubbard model and discuss the transport properties studied
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here. In Sec. III, we present our numerical results. In Sec. IV
we perform an analytic expansion about the large-mass-ratio
and strong-interaction limit, which is shown to quantitatively
model the transport properties. In Sec. V we discuss exper-
imental implications of our work, including a proposal for
measuring the current-current correlation function in ultracold
atomic systems. Our conclusions are presented in Sec. VI.

II. FORMALISM

A. Fermi-Hubbard model

The mass-imbalanced Fermi-Hubbard model is defined by
the Hamiltonian

H = −
∑

iμ

(tμc†
i,μci+1,μ + H.c.) + U

∑
i

ni,↑ni,↓, (1)

where i labels the sites, μ =↑,↓ labels the spins, and tμ and U
parametrize the kinetic and interaction energies, respectively.
We also write t↑ = t and t↓ = ηt , so that η parametrizes the
mass imbalance. We take 0 � η � 1, defining ↓ spins as the
heavy particles.

As already explained, in the absence of any mass im-
balance (η = 1), the model is integrable and can be solved
exactly with the Bethe ansatz [31,32]. Adding a mass imbal-
ance (η < 1) formally breaks integrability.

In the limit of infinite mass imbalance (η = 0), Eq. (1)
reduces to the Falicov-Kimball model [33], which has an ex-
tensive number of local conserved densities: [H, ni,↓] = 0 ∀ i.
One can think of the model as describing noninteracting spin-
less fermions interacting with a static binary potential given
by the configuration of heavy spins. At high temperatures the
thermal density matrix sums over all possible binary disorder
configurations, and the model is expected to exhibit Anderson
localization for η = 0 [18,34]. For finite η → 0, the model is
ergodic but with a diverging relaxation time [14–17,19].

We report on the case of half filling where the ensemble-
average number of particles on a site are 〈niμ〉 = 1/2. In the
η = 1 model, the half filled system has an enhanced symmetry
with respect to other fillings, resulting in unconventional sub-
diffusive dynamical scaling [9]. This makes the half filled case
particularly interesting. At other fillings, transport is ballistic
when η = 1 [3]. For generic η 	= 1, we expect that results at
different densities are qualitatively similar.

B. Transport

In this paper we quantify transport by studying the
behavior of the optical conductivity. Using the fluctuation-
dissipation theorem [35], one can express the real part of the
spin- and site-resolved conductivity as

σμν (l, m; ω) = 1 − e−βω

2ω

∫ ∞

−∞
dτ eiωτ	μν (l, m; τ ), (2)

where 	μν (i, j; τ ) is the current-current correlation function:

	μν (l, m; τ ) = Tr(e−βH jμ(l, τ ) jν (m, 0)). (3)

The current operator acting on sites (l, l + 1) is defined as

jμ(l ) = −itμ(c†
l+1,μ

cl,μ − H.c.), (4)

and jμ(l, τ ) = eiHτ jμ(l )e−iHτ . Of course, the conventional
expression for the optical conductivity is recovered by sum-
ming over indices l and m:

σ (ω) = 1

N

∑
l,m

σ (l, m; ω). (5)

We will mainly be concerned with σ = σ↑↑, and for nota-
tional simplicity will denote j = j↑, and 	 = 	↑↑, omitting
the subscripts when we are referring to the light particles. We
make this choice because the high-temperature charge (σc)
and spin (σs) conductivities are both directly proportional to
σ↑↑ when η = 0 and η = 1.

For systems with a bounded spectrum, as we consider here,
we can expand Eq. (2) in the high-temperature limit, T 
 t,U
[36–39]:

σ (l, m; ω) = β

2

∫ ∞

−∞
dτ eiωτ Tr( j(l, τ ) j(m, 0)) + · · · . (6)

Thus, up to an overall factor of β, the high-temperature optical
conductivity is simply the Fourier transform of the current-
current correlation function, 	(l, m; τ ) = Tr( j(l, τ ) j(m, 0)).
This expansion can be performed for σ↑↑ and σ↓↓, but the
cross terms, σ↑↓, are only nonzero at second order (∝β2).
Here we focus on the leading-order expansion, studying 	(τ ).

Going forward, we present calculations performed on
uniform, infinite-temperature systems in the thermodynamic
limit. Making use of translational invariance, we define
	(x, τ ) = (1/N )

∑
l 	(l, l + x; τ ), which is well defined in

the limit N → ∞. In one dimension, the units of the
current-current correlation function are those of a squared
characteristic rate, and hence we report it in units of t2. We
report values for the high-temperature conductivity in units of
σref = aβt , where a is the lattice spacing. This corresponds to
the conductivity from a random diffusive walk with scattering
time 1/t and a mean-free path a.

C. Tensor network techniques

We compute the real-time, spatially resolved current-
current correlation function 	(x, τ ) at infinite temperature
using infinite tensor network techniques [40,41]. As described
in Appendix A 1, we purify the infinite-temperature density
matrix, writing it as ρ0 = Tr|ψ0〉〈ψ0| where the trace is taken
over a set of auxiliary degrees of freedom, corresponding to
a copy of the original system [40,41]. We write |ψ0〉 as an
infinite matrix product state.

Operator expectation values can be written as Tr(ρ0Ô) =
〈ψ0|Ôphys|ψ0〉 where Ôphys acts only on the physical degrees
of freedom of |ψ0〉. Given this definition, we may write the
current-current correlation function as an expectation value:

	(x, τ ) = 〈ψ0|eiHphysτ jphys(0)e−iHphysτ jphys(x)|ψ0〉, (7)

where jphys(0) is a local current operator of the form in
Eq. (4) connecting the physical sites at x = 0 and x = 1. As
the infinite-temperature density matrix is simply the identity
operator, its purification has a special property: for any oper-
ator Ôphys acting on the physical degrees of freedom, there is
a unique operator Ô′

aux acting only on the auxiliary degrees
of freedom which satisfies Ôphys|ψ0〉 = Ô′

aux|ψ0〉 [42]. The
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relationship between Ô and Ô′ is determined by the choice
of purification, |ψ0〉, which is not unique. In Appendix A 1
we elaborate on how the choice of purification can be useful
in implementing block-sparsity constraints [43], and we show
how to determine the auxiliary partner Ô′ to an operator Ô for
a given purification.

Given this property of |ψ0〉, we define H ′
aux as the auxiliary

partner of the Hamiltonian, Hphys. This allows us to rewrite
Eq. (7) as

	(x, τ ) = 〈ψ0| jphys(0)e−i(Hphys−H ′
aux )τ jphys(x)|ψ0〉, (8)

where we have taken advantage of the fact that operators act-
ing on the auxiliary and physical degrees of freedom commute
with one another. The exponentiated object Hphys − H ′

aux is
effectively the Liouvillian superoperator L, which conven-
tionally is defined by its action on an operator Ô: LÔ =
[H, Ô] [36]. Indeed,

(Hphys − H ′
aux)Ôphys|ψ0〉 = ([H, Ô])phys|ψ0〉. (9)

To compute a spatially dependent correlation function
	(x, τ ) without finite-size effects, we allow a “window”
within an infinite matrix product state (MPS) to evolve
nonuniformly. As the window is time-evolved, the region of
nonuniformity will be housed within a light-cone that expands
linearly in time, at least for short times. To accommodate this,
we allow the system to add un-evolved sites to the boundaries,
creating a dynamically expanding window [44–46]. So long as
the threshold for adding sites is set sufficiently low, there will
be effectively no finite-size dependence. While the present
analysis will focus on uniform properties (corresponding to
the Fourier k = 0 component), we show features of our site-
resolved technique in Appendix A 4.

To time-evolve the MPS, we sequentially multiply |ψ0〉 by
the W II approximation to the time-evolution operator [41,47],
truncating the bond dimension at each step. We utilize a
third-order split-step method [41,47] and choose a time step
�τ = 0.01/t . With these short time steps our method is ex-
tremely accurate. Unlike some alternative techniques, there
are no challenges here with dynamically expanding the bond
dimension [48]. The results shown here use maximum bond
dimensions of χ = 750–1000. We emphasize that, for the
times shown, our MPS simulations are numerically exact.

III. RESULTS

A. High-frequency properties

In Fig. 1(a) we show the uniform current-current correlator
in the temporal domain, 	(τ ) = ∑

x 	(x, τ ), for U/t = 20
and a series of mass ratios η = 0, 0.1, 0.2, 0.3, 0.4, 0.5. For
small η, the correlation function is dominated at short times
by large oscillations at a frequency ω ∼ U , and slower oscil-
lations with ω ∼ t . The rapid oscillations have an envelope
which is modulated at a lower frequency ω ∼ t . Note that
	(0) = t2/2 is constrained by a sum rule and is independent
of η.

For infinite mass imbalances (η = 0), each of these oscil-
latory components persist indefinitely. This can be understood
by recognizing that the Falicov-Kimball model is an ex-
actly solvable model of free fermions in a binary-disordered

FIG. 1. (a) Uniform current-current correlation function, 	(τ ) =∑
x 	(x, τ ), for U/t = 20 and a variety of mass ratios. Curves are

offset for visual clarity. Tick marks denote the zero value at each
η, and in all cases 	(0) = t2/2. For η = 0, there are persistent
oscillations out to long times. Our analytic model, derived in the
limit η, t/U → 0, is shown in gray behind the η = 0 data—we
capture the period of oscillations and their amplitude modulations
very accurately. Deviations are due to nonzero t/U . For η > 0, these
oscillations are damped by the motion of heavy particles. (b), (c) We
can extract the damping rate for a given η by fitting the Fourier
transform of 	(τ ) to the analytic result with a Gaussian broadening
factor (see main text). Panel (b) shows the precise agreement for
η = 0, without broadening, and panel (c) shows the agreement at
η = 0.1. (d) Fitted Gaussian broadening factor, �AC, as a function of
η. Dashed line is �AC = η, which appears to describe the data very
well.

background potential. In one dimension, this system is
Anderson-localized for arbitrarily small U/t , so σ (ω = 0) =
0. For large U/t , the light-particle wave functions are all
localized to regions of constant background potential (i.e.,
regions in which 〈n↓〉 = 0 or 1 throughout). When we take the
thermal ensemble average, the properties of the system can be
written as a sum of contributions from disjoint regions, each
of which possess a quantized energy spectrum. Consequently,
the Fourier transform of the current-current correlator, 	(ω),
is a discrete sum over δ functions. In Appendix C, we carry out
an analytic calculation of 	(τ ) when the single-particle wave
functions are completely localized, i.e., the limit η, t/U →
0. The resulting time series is plotted as the gray curve in
Fig. 1(a), sitting behind the η = 0 data, which closely matches
the numerical results out past 10 tunneling times. Deviations
from the analytic expression are due to the finite localization
length at U/t = 20.

As shown in Fig. 1, the long-lived oscillations at η = 0
are damped for finite η. In the frequency domain, we find
that the finite η spectra are well approximated by Gaussian
broadening our analytic η = 0 results. Figure 1(b) shows
the Fourier transform of the η = 0 data from Fig. 1(a). The
resulting peaks are well-aligned with the locations of the δ

functions in our analytic theory, shown with colored triangles.
Figure 1(c) shows the spectrum for η = 0.1. Colored lines
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FIG. 2. (a) Integral of the uniform current-current correlation
function,

∫ τ

0 dτ ′	(τ ′), for U/t = 20 and a variety of mass ratios.
Integrating the time series reduces the contributions from rapidly os-
cillating terms, allowing one to more easily extract the low-frequency
behavior. For η = 0.3, oscillations with ω ∼ t have a substantial
amplitude even out to 30 tunneling times; these oscillations are even
larger for η < 0.3, so those curves have been omitted for visual
clarity. Fitting the long-time behavior of these curves to the form
T σDC/2 + Ce−�DCτ , we can extract the DC conductivity, σDC and the
DC transport relaxation rate, �DC. These are shown as a function of η

in panels (b) and (c), respectively. We find that σDC appears to vanish
continuously as η → 0 and diverges as η → 1. The transport relax-
ation rate exhibits nonmonotonic behavior, peaking around η = 0.5
and vanishing at η = 0, 1. These features are consistent with the fact
that both the η = 0 and η = 1 limits are integrable.

depict our analytic η = 0 result, broadened by a Gaussian
of width �AC/t = 0.077. For each value of η, we find the
best fit �AC. As shown in Fig. 1(d), �AC is proportional to
η with a proportionality constant close to 1 (gray dashed line).
This provides a strong indication that the principle damping
mechanism is the motion of heavy particles, which should
occur on timescales ∼1/ηt , hence resulting in �AC ∝ η. While
this AC damping rate is not a common transport coefficient
to measure in condensed-matter systems, cold atom experi-
ments are well-placed to extract it by studying the envelope of
ω ∼ U oscillations in the current-current correlation functions
(see Sec. V).

B. Low-frequency properties

In Fig. 2(a) we show the integrated uniform current-current
correlator,

∫ τ

0 dτ ′	(τ ′), for a variety of mass ratios. This
quantity is convenient for studying the low-frequency prop-
erties of 	(τ ), as contributions from components oscillating
with frequency ω will generically be diminished by a factor of
1/ω2. For small η, however, these components are nonetheless
substantial, and hence those curves are omitted from Fig. 2 for
clarity.

After a short-time increase, the integrated time series for
intermediate values of η slowly relax to a constant value
at long times. Up to prefactors, this asymptotic value is

the DC conductivity: limτ→∞
∫ τ

0 dτ ′	(τ ′)/t = 2σDC/σref [cf.
Eq. (6)]. As introduced in Sec. II, σref = aβt , where a is the
lattice spacing, β the inverse temperature, and t the hopping
matrix element. We extract the asymptotic conductivity, σDC

as well as the transport relaxation rate, �DC, by fitting the in-
tegrated time series to the form

∫ τ

0 dτ ′	(τ ′)/t = 2σDC/σref +
Ce−�DCτ with {C, σDC, �DC} as fitting parameters. Fitting was
performed for τ � 6/t . These two DC transport properties are
shown as functions of η in Figs. 2(b) and 2(c), respectively.

We find that the DC conductivity diverges continuously as
η → 1, while the relaxation rate vanishes. This divergence is
consistent with superdiffusive behavior at η = 1. Superdiffu-
sivity is characterized by a dynamical exponent 1 < z < 2,
which describes the long-time hydrodynamic relationship be-
tween spatial and temporal fluctuations; diffusive transport
corresponds to z = 2, while ballistic transport corresponds to
z = 1. For the half-filled 1D Hubbard model one expects KPZ
dynamical scaling, corresponding to a dynamical exponent
z = 3/2 [9]. As described in Appendix B, the dynamical
exponent is directly related to the long-time behavior of
the integrated current-current correlator:

∫ τ

0 dτ ′	(τ ′)/t ∝ τα

with α = 2/z − 1 [2]. This implies a power-law divergence in
the optical conductivity, σ (ω) ∝ |ω|−α . Reliably extracting α

from our data is challenging because we have a relatively short
time window over which we can fit the power law: Short-time
transients persist to τ ∼ 10/t , and our time series only extends
to τ = 30/t . Our best fit yields α ≈ 0.3, with errors that are
dominated by systematics and are therefore hard to quantify.
This result compares reasonably well with the expected value
of α = 1/3.

In the opposite limit, η → 0, we find that the conductivity
and the relaxation time appear to continuously vanish. This
is consistent with an Anderson-localized infinite-temperature
state at η = 0, in which the effective free-particle excitations
do not relax. For η < 0.3, we are unable to reliably extract
σDC or �DC from the finite-time current correlations due to
large and persistent oscillations in the integrated correlator.

C. Interaction dependence

In Fig. 3(a), we show the integrated time series for a
variety of U/t = 1, 2.5, 5, 10, 15, 20 at fixed η = 0.5. In
this nonintegrable limit, the relaxation timescales are rela-
tively short and our numerics provide a reasonable estimate
for the interaction-dependence of the DC transport proper-
ties. Figure 3(b) shows the resistivity, 1/σDC, as a function
of U/t . The resistivity vanishes continuously in the weakly
interacting limit, U/t → 0. Second-order perturbation theory
[19,38] suggests that the resistivity should vanish ∝(U/t )2 in
this limit, which is consistent with our results. For large U/t ,
we expect the resistivity to plateau at a finite value, although
at U/t = 20 it has not yet saturated. Note that this large-
interaction limit does not approach a Mott insulator (which
would have an infinite resistivity at half filling) because we
took the limit of infinite temperature first.

As shown in Fig. 3(c), the transport relaxation rate �DC

displays similar behavior to the resistivity: it vanishes as
U/t → 0 and plateaus as U/t → ∞. At weak coupling, one
should find a Drude-like relationship between the resistivity
and the scattering rate: 1/σDC ∝ (m∗/n)eff�DC. This suggests
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FIG. 3. (a) Integral of 	(τ ) out to finite times for η = 0.5 and
various values of U/t . Note the log scale on the y-axis. (b) DC
resistivity (inverse of the conductivity) versus U/t from a fit to panel
(a). The resistivity vanishes continuously as we approach the nonin-
teracting limit, U/t → 0. As U/t → ∞, the resistivity is expected to
plateau at a finite value. (c) Transport decay rate versus U/t from a fit
to panel (a). The decay rate vanishes as U/t → 0 and appears to peak
around U ∼ 8t . As U/t → ∞, �DC approaches a finite η-dependent
value.

that �DC ∝ U 2/t , although we are not able to resolve this
feature. In the strong-coupling limit, one generically expects
the transport scattering rate to saturate at a constant value set
by the lattice spacing [38].

IV. ANALYTIC EXPANSION

In the limit η → 0 the heavy particles become frozen,
and the interaction term in the Hamiltonian becomes a static
disorder potential. The resulting noninteracting model is much
simpler than the original. Here we develop an analytic expan-
sion which lets us calculate 	(τ ) for η = 0 when U 
 t .

For a given configuration of the heavy particles, {n = ni,↓},
the motion of the light particles is controlled by a Hamiltonian

H0 = −t
∑

i

(c†
i,↑ci+1,↑ + H.c.) +

∑
i

V (ri )ni,↑, (10)

where V (ri ) = U 〈ni,↓〉. We can use Wick’s theorem to write
the current-current correlator of this model in terms of the
single-particle Green’s functions, G>

i j (τ ) = 〈ci(τ )c†
j (0)〉 and

G<
i j (τ ) = −〈c†

j (0)ci(τ )〉:

	{n}(x, τ ) = − t2

Ns

∑
i, j,k,l
j−i=x

ηikη jl G>
i, j (τ )G<

k,l (−τ ), (11)

where

ηik =
⎧⎨
⎩

1 if k − i = 1
−1 if k − i = −1
0 otherwise,

(12)

and i, j, k, l are summed over all Ns lattice sites with the
constraint that j − i = x. We then calculate 	(x, τ ) by per-
forming a disorder average over 	{n}(x, τ ).

The potential in Eq. (10) breaks the lattice into a series of
disjoint regions over which V (ri ) is constant (either zero or

U ). We are interested in the large-U limit: To leading order,
a light particle which is placed in one of these regions cannot
leave—the energy eigenstates are localized to these regions.
Thus the Green’s functions Gi j vanish unless i and j are in
the same region. Equation (11) can then be written as the sum
of two terms: 	(0), for which both Green’s function describe
motion in the same region, and 	(U ) where they are in neigh-
boring regions. The former gives dynamics on the timescale
1/t , while the latter gives dynamics on the scale 1/U .

As detailed in Appendix C, the resulting spectrum of 	

consists of a sum of δ-function peaks, illustrated in Fig. 1(b).
The low-frequency peaks are at energies ω = 2t[cos πn/(m +
1) − cos πn′/(m + 1)] where n, n′, m are integers with dis-
tinct parity (i.e., n ± n′ is odd) with 1 � n, n′ � m. The parity
constraint comes from the symmetry of the current operator,
and implies that there is no peak at ω = 0. Here m cor-
responds to the length of the contributing region. Large-m
regions are exponentially suppressed, and the dominant peaks
come from m = 2 and m = 3. This results in the U-shaped
distribution of spectral weight, as seen in Fig. 1(b). The high-
frequency peaks are at energies ω = ±U + 2t[cos πn/(m +
1) − cos n′/(m′ + 1)] where n, n′, m, and m′ are integers with
1 � n � m and 1 � n′ � m′. There are no parity constraints
and m, m′ represent the lengths of neighboring regions. The
dominant term comes from n = n′, resulting in ω = ±U .
Again, the large m, m′ terms are exponentially small.

The analytic peak locations and amplitudes appear to
match well the numerical results from our MPS calculations.
The broadening of the black curve in Fig. 1(b) comes from the
finite time-window of our numerical data.

V. EXPERIMENTAL IMPLEMENTATION

Transport measurements in ultracold atomic systems are
in general quite challenging to implement. Recent experi-
ments have managed to measure the DC conductivity via the
Einstein relation [29], the optical conductivity via a modu-
lated trap potential [28], and the momentum relaxation rate
[27]. Here, we propose an alternative technique to measure
the optical conductivity in the time domain, and hence 	(τ )
at high temperatures. In this way, our numerical results can
be studied directly using the present generation of ultracold
atom experiments. Our experimental procedure is schemati-
cally illustrated in Fig. 4. After preparing a thermal ensemble,
we propose pulsing on a lattice tilt, Htilt (τ ) = F (τ )

∑
l lnl ,

for a short time, W . In quantum gas microscopes, this lin-
ear potential can be realized from the AC Stark shift at the
edge of a wide Gaussian beam [49]. Generically, this pulsed
tilt will generate a current response given by 〈J〉(β, ω) =
σ (β, ω)F̃ (ω), where F̃ (ω) is the Fourier transform of F (τ )
and σ (β, ω) is the optical conductivity at inverse temperature
β. In the limit that the pulse duration W → 0, we can ap-
proximate F (τ ) ≈ F0W δ(τ ), and hence the real-time current
response is given by 〈J〉(β, τ ) = F0W σ (β, τ ). In the high-
temperature β → 0 limit, then, we use Eq. (6) to find

〈J〉(β, τ ) ≈ βF0W

2
	(τ ). (13)

In quantum gas microscopes, the expectation value of the
current operator can be measured by releasing the atoms
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FIG. 4. Experimental sequence for measuring current-current
correlations in an ultracold atomic gas. (top) After preparing a ther-
mal ensemble, one pulses on a lattice tilt for time T . One then allows
the system to evolve for time τ and measures the momentum distri-
bution using time of flight (see main text). (bottom) Benchmarking
this procedure using the TDVP algorithm on a 30-site lattice using
Eq. (13). Solid curves show TDVP calculations for various param-
eters. Simulations approach the infinite-system, infinite-temperature
results (gray dashed line) when the parameters F0a/U , WU , and βU
are made small. Dashed curve is continued to longer times for visual
clarity.

from their trapping potential, allowing them to expand
and thus mapping their in situ momenta to position space
[25,26]. Once the momentum distribution function 〈nk,μ〉 is
known, the expectation value of the current is simply 〈J〉 =∑

k,μ tμ sin(k)〈nk,μ〉.
In the bottom panel of Fig. 4, we show the results of this

procedure simulated with the finite-size time-dependent vari-
ational principle (TDVP) algorithm [50] on a 30-site lattice
for U/t = 20 and various values of β. This modeling captures
experimental finite-size effects, as well as the influence of de-
tailed pulse shapes. As noted above, our results emerge in the
β → 0 limit; finite-β corrections yield additional information
about the full optical conductivity σ (β, τ ). We find that the
results agree well with our infinite calculations so long as βU ,
WU , and F0a/U are all �1 (assuming U 
 t).

This proposed experimental procedure yields the conduc-
tivity at any temperature. Comparison with our theoretical
results, however, is predicated on the simultaneous validity of
the single-band approximation and the high-temperature limit.
This requires W � T � �, where � is the band gap and W
is the bandwidth. Both W and � can be estimated by solving
the single-particle Schrödinger equation in a sinusoidal poten-
tial V (x) = V0 cos2(kRx). The ytterbium experiment [20] was
performed with V0 = 7ER, where ER = h̄2k2

R/2m. This leads
to W/� ≈ 0.05, indicating that there is a temperature regime
where our single-band high-temperature expansion is relevant.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have have a provided a comprehen-
sive study of the moderate-time transport properties of the

one-dimensional mass-imbalanced Fermi-Hubbard model in
the high-temperature limit. This model serves as a valu-
able setting for exploring the interplay of integrability and
localization.

By studying the strongly interacting and heavily imbal-
anced limit, we have mapped out the resonances associated
with bound excitations of heavy and light particles. Our an-
alytic model provides a precise account of these nontrivial
finite-frequency features, which we have benchmarked against
state of the art time-dependent MPS simulations. In the
strongly interacting and weakly imbalanced limit, we found
that the DC conductivity diverges continuously as η → 1.
At the symmetric point, superdiffusive correlations lead to a
power-law divergence in the integrated correlator as a function
of time. This corresponds to a power-law divergence in the
optical conductivity, σ (ω) ∝ |ω|−α . We estimate the exponent
of this divergence to be α ≈ 0.3, close to the KPZ prediction
of α = 1/3.

Many interesting questions regarding this model remain
outstanding. While there is good reason to believe that
the mass-imbalanced model is ergodic for η > 0 [14–17],
directly studying the onset of diffusive transport is challeng-
ing. Questions persist about the long-lived nature of bound
states and whether intermediate-scale subdiffusive regimes
exist prior to thermalization [16,20]. Similar questions ex-
ist near the symmetric limit: How does the characteristic
time for the onset of diffusion, τD, behave as η → 1 in
the strongly correlated limit? The timescales on which these
questions can be answered are not accessible with the cur-
rent generation of numerical tools, and it will require further
theoretical and experimental insights to probe these regimes
[51–53]. Our experimental proposal provides one possible
approach.
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APPENDIX A: DETAILS OF MATRIX PRODUCT
STATE CALCULATION

1. Matrix product state purification

To model the properties of the infinite-temperature current-
current correlation function, we first purify the density matrix
so that it can be represented as an infinite matrix product
state (iMPS). This is a standard technique, so we refer the
interested reader to Ref. [40] for a thorough review. In this
section, we give a brief introduction to purification and then
describe the procedure that we use for incorporating number
conservation.

The infinite-temperature density matrix, ρ0, is simply a
diagonal operator acting on the physical Hilbert space of the
Hamiltonian:

ρ0 =
∏

i

⎡
⎣ 1

Ni

∑
si,s′

i

δsi,s′
i
y(si )|si〉〈s′

i|
⎤
⎦, (A1)

where i indexes lattice sites and si, s′
i ∈ {↑,↓, ∅,↑↓} span

the local Hilbert space on site i. Importantly, this form of ρ0
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shows that distinct sites i and j are completely uncorrelated.
The quantity y(si ) is the fugacity and Ni is the normalization
enforcing Trρ0 = 1. At infinite temperature, zero magnetiza-
tion and a fixed particle density n̄, we have y(↑) = y(↓) =
n̄/(2 − n̄), y(∅) = 1, and y(↑↓) = y(↑)y(↓), which means
Ni = [1 + y(↑↓)]2.

We now introduce an auxiliary set of states, labeled by
quantum number {t}, which expand our Hilbert space and
allow us to represent the density matrix as ρ0 = Tr{t}|ψ0〉〈ψ0|.
The simplest such representation is

∣∣ψ triv
0

〉 =
∏

i

⎡
⎣ 1√

Ni

∑
si,ti

δsi,ti

√
y(si )|si〉 ⊗ |ti〉

⎤
⎦. (A2)

Here i indexes the physical sites, as before, but now it is as-
sociated with two sites: the same physical one, whose state is
denoted by si, and the associated auxiliary one, whose state is
denoted by ti. We refer to this as a trivial purification because
it fixes the state of the physical site si to be identical to that of
the auxiliary site ti.

As explained in Sec. A 2 it is convenient to construct
alternative purifications via unitary transformations on the
auxiliary subspace. These will make it easier to encode con-
servation laws. Explicitly,

|ψ0(U )〉 = U †
∣∣ψ triv

0

〉

=
∏

i

⎡
⎣ 1√

Ni

∑
si,ti

δsi,tiU ∗t̃i,ti

√
y(si )|si〉 ⊗ |t̃i〉

⎤
⎦

=
∏

i

⎡
⎣ 1√

Ni

∑
si,ti

U ∗ti,si

√
y(si )|si〉 ⊗ |ti〉

⎤
⎦. (A3)

For arbitrary unitary transformations, the infinite-temperature
density matrix can be written as a partial trace over the auxil-
iary degrees of freedom:

ρ0 = Tr{t,t ′ |ψ0(U )〉〈ψ0(U )|

=
∏

i

⎡
⎣ 1

Ni

∑
si,s′

i,ti,t
′
i

√
y(si )y(s′

i )U ∗ti,si |si〉〈ti|t ′
i 〉〈s′

i|Ut ′
i ,s

′
i

⎤
⎦

=
∏

i

⎡
⎣ 1

Ni

∑
si,s′

i

δsi,s′
i
y(si )|si〉〈s′

i|
⎤
⎦. (A4)

2. Symmetries

One often uses conservation laws to write MPS ten-
sors in a block-sparse form, speeding up the calculations
[40,43]. In our case, the Fermi-Hubbard model conserves
both total magnetization and total particle number: Upart (1) ⊗
Uspin(1). For the wave function on the doubled Hilbert space,
then, we should double the symmetry: Uphys

part (1) ⊗ Uaux
part (1) ⊗

Uphys
spin (1) ⊗ Uaux

spin(1). Unfortunately, total magnetization and
particle number are explicitly not conserved for |ψ0(U )〉 be-
cause it represents a purified grand-canonical density matrix.
Working in the canonical ensemble is intractable, as that leads
to a MPS whose bond dimension scales with the system size

[43]. Nonetheless, we can take advantage of some of the
symmetry: In the trivial purification, for each spin state the
number of auxiliary particles equals the number of physical
particles. A convenient way to keep track of this symmetry
is to introduce a particle-hole transformation on the auxiliary
particles, U = ∏

i Ui, where

Ui =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0

0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ (A5)

is written in the basis introduced above: (↑,↓, ∅,↑↓). This
results in a purified state of the form

|ψ0(U )〉 =
∏

i

[
1√
Ni

( −
√

y(↑↓)|↑↓〉phys|∅〉aux

+
√

y(∅)|∅〉phys|↑↓〉aux −
√

y(↑)|↑〉phys|↓〉aux

+
√

y(↓)|↓〉phys|↑〉aux
)]

i

. (A6)

As one sees explicitly, in this representation the total num-
ber of particles (physical plus auxiliary), and their net spin,
is fixed. Hence we can introduce the associated quantum
numbers, and all tensors in our MPS calculation will have
block-sparse forms. The minus signs are chosen to simplify
the construction in Sec. A 3.

3. Auxiliary operators

The fact that ρ0 is diagonal means that its purification has
a special property: any operator Ôphys that acts on the physical
degrees of freedom of |ψ0(U )〉 has a partner, Ô′

aux, acting on
just the auxiliary degrees of freedom, such that [42]

Ôphys ⊗ Iaux|ψ0(U )〉 = Iphys ⊗ Ô′
aux|ψ0(U )〉. (A7)

The relationship between Ô and Ô′ depends on the choice
of purification, |ψ0(U )〉: Ô′ = U †ÔU . As argued in the main
text, determination of the auxiliary Hamiltonian can sig-
nificantly decrease the computational complexity of time
evolution by allowing one to shift the purification insertion
point [41]. In our case, the choice of unitary in Eq. (A5) im-
plies that the auxiliary Hamiltonian (at half filling) is simply
the particle-hole transform of the physical one:

U †ĉμU = −ĉ†
μ,

U †n̂μU = 1 − n̂μ. (A8)

4. Time evolution with infinite boundary conditions

The numerical technique we employ is based on the
dynamically expanding window technique developed in
Refs. [44–46], and we refer interested readers to these ref-
erences. In this section we give a high level discussion of a
number of details, explaining the major bottlenecks. To calcu-
late our response function, we apply the local current operator
j(0) = −it (c†

1c0 − c†
0c1) to the infinite matrix product state

described by Eq. (A7). This is a local perturbation that just
influences sites l = 0, 1. As discussed in the main text, we
then time-evolve this wave function using the Liouvillian,
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FIG. 5. Heat map of the entanglement entropy, Sent (x, τ ) (left),
and current-current correlator, 	(x, τ ) (right), as a functions of posi-
tion and time. On both plots, the effective length of the MPS is shown
as a solid jagged line: the white line in (left) is equal to the number
of physical sites at a given time, while the black line in (right) is
double the number of physical sites (as we take all possible overlaps
between two length-L MPS, see Appendix A 4).

L = Hphys − H ′
aux, to produce

|ψ (0, τ )〉 = eiLτ j0|ψ0〉. (A9)

At any finite time τ , the matrix product state representation
of |ψ (0, τ )〉 will differ from |ψ0〉, only over a region of size
l0(τ ), centered at the origin. The perturbed region grows lin-
early with time, describing a light cone. In our calculation
we start with an infinite matrix product state ansatz where
all but l0(τ = 0) = 6 of the matrices have the form Eq. (A7).
As described in the main text, we use a third-order split step
W II time evolution algorithm, where we sweep back and forth
through this active region, updating the l0 matrices. We in-
crease l0 when the entanglement entropy between the bulk and
boundary sites surpasses εthresh = 10−5 [44–46]. Figure 5(a)
shows the evolution of the entanglement entropy of the pu-
rified wave function during this process, for U/t = 20 and
η = 0.5. The white line shows the spatial extent of the active
region, outside of which the MPS tensors correspond to those
in Eq. (A7). The light-cone spreading of the entanglement
is clear. Note that this entanglement entropy is a property
of the purified wave function, rather than of the physical
density matrix. Nonetheless, it illustrates the key numerical
bottleneck in our calculation: The peak entanglement entropy
grows linearly in time, and hence the required bond dimen-
sion grows exponentially [54]. To calculate the current-current
correlator, we relabel our sites to produce the translated state
T̂x|ψ (0, τ )〉 = |ψ (x, τ 〉. The current-current correlator is then
found by calculating the overlap between the shifted and orig-
inal states,

	(x, τ ) = 〈ψ ∗ (0, τ/2)|ψ (x, τ/2)〉. (A10)

In practice, the translation is implemented by temporarily
appending unevolved sites to the end of the chains. Given
the product state on the wings of purified wave function, for
x > 2l0 − 1 the correlator trivially factors into

	(x > 2l0 − 1, τ ) = 〈ψ ∗ (0, τ/2)|ψ0〉〈ψ0|ψ (x, τ/2)〉,
(A11)

FIG. 6. Infinite-temperature current-current correlation func-
tions in the Fourier domain, 	(k, ω), at U/t = 20 and a range of
imbalances. At η = 0 we resolve a series of δ function contribu-
tions (see Sec. IV) that vary continuously with k. As argued in
Appendix C, spectral weight is confined around ω = 0 and ω = ±U .
As η increases, these δ functions broaden. As η → 1, sharp low-
frequency features appear near k = 0 and k = ±π , while the ω ∼ U
excitations become weakly dispersive.

which vanishes due to the absence of equilibrium currents.
Figure 5(b) shows the current-current correlator inside this ex-
panding window. One sees rapid oscillations, with timescale
∼1/U , inside an envelope which decays on a timescale of
order several 1/t . Visually, the current correlations do not
appear to spread significantly, but instead remain confined to
a central region of ≈20 sites. By Fourier transforming the
data in Fig. 5, we can calculate 	(k, ω), which gives the
frequency and momentum dependence of the current corre-
lations. Figure 6 shows 	(k, ω) for U/t = 20 and a variety
of mass imbalances. One clearly sees structures on two fre-
quency scales: low-frequency contributions bounded by ±4t ,
and high-frequency contributions near ω ∼ ±U . This same
structure is apparent in the time domain in Fig. 5 and is
described in more detail in Appendix C for η = 0. For small
η one sees a fine structure of bands, whose frequencies cor-
respond to the δ-functions in the optical conductivity. For
η = 0 the spectral weight associated with ω ∼ U is indepen-
dent of k. This indicates that the associated excitations are
localized. These correspond to processes where the current
operator has created or broken up a doublon. At larger η

the momentum-resolved spectra are smooth. The bands with
ω ∼ ±U are weakly dispersing because the doublons can hop
with an effective matrix element teff ∼ ηt2/U . As η → 1, we
resolve a cusp in the optical conductivity near ω, k = 0 arising
due to superdiffusive fluctuations at the highly symmetric,
integrable point [9]. According to Eq. (6) the DC conduc-
tivity can be found from 	(k, ω) by taking the limit ω → 0
at fixed k = 0, σDC = σref limω→0 	(k = 0, ω), where σref =
aβt . Conversely, at fixed k 	= 0 one expects 	(k, ω = 0) = 0,
as a static longitudinal electric field with zero mean cannot
generate equilibrium currents. Thus the limits k → 0 and
ω → 0 do not commute. This singular structure is smoothed
out by our finite time effects. Nonetheless, in the larger η data
in Fig. 6, one sees different behavior when approaching the
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origin from different directions. The apparent spectral gap at
small but nonzero η is a finite-time artifact.

APPENDIX B: POWER-LAW CORRELATIONS

Here we provide a derivation of the relationship between
the dynamical scaling exponent, z and the power-law exponent
of the integrated current-current correlator, α, presented in
Sec. III. Equivalent expressions can be found in Ref. [2].
Given that particle and spin densities are conserved in our
system, a local density disturbance will spread out with
width W 2(τ ) = ∫

dx x2δn↑(x, τ ) scaling as W 2(τ → ∞) ∝
τ 2/z, where z is the dynamical exponent [2,55]. For bal-
listic transport z = 1, while for diffusive transport z = 2.
This behavior is also found in the density-density correlation
function,

C↑↑(x, τ ) = 1

Ns

∑
i

〈n↑(i + x, τ )n↑(i, 0)〉, (B1)

which by the fluctuation-dissipation theorem can be related
to the density response of the system to a local potential. As
such, we can define

�2
↑↑(τ ) =

∑
x

x2C↑↑(x, τ ) −
(∑

x

xC↑↑(x, τ )

)2

, (B2)

which encodes the width of a density disturbance follow-
ing a local perturbation. Hence, it too obeys �2

↑↑(τ ) ∝ τ 2/z

in the long-time (hydrodynamic) limit [2,55]. For notational
simplicity, we leave off the subscript ↑, and calculate the
rate of change of ∂2

τ �2(τ ) = ∑
x x2∂2

τ 〈n(x, τ )n(x, 0)〉. Using
time-translational invariance and reflection symmetry, we can
rewrite this as

∂2
τ �2(τ ) = −

∑
x

x2〈∂τ1 n(x, τ1)∂τ2 n(0, τ2)〉, (B3)

evaluated at τ1 = τ and τ2 = 0. We then relate the time deriva-
tives of the densities to the current, ∂τ n(x, τ ) = j(x + 1, τ ) −
j(x, τ ), and rearrange the sum to connect �2 to the current-
current correlator:

∂2
τ �2(τ ) = 2

∑
x

〈 j(x, τ ) j(0, 0)〉 = 2	(τ ). (B4)

Given that �2(τ ) ∝ τ 2/z, Eq. (B4) yields 	(τ ) ∝ τ 2/z−2.
Hence, the integrated current-current correlator should scale
as τα with α = 2/z − 1. This same exponent describes the
associated low-frequency behavior of the optical conductivity:
σ (ω) ∝ |ω|−α [2]. For generic mass imbalance we expect z =
2 and hence α = 0. At η = 1, KPZ scaling predicts z = 3/2
and hence α = 1/3.

APPENDIX C: DETAILS OF ANALYTIC EXPANSION

In the Falicov-Kimball limit η → 0, the mass-imbalanced
Hubbard Hamiltonian reduces to

H0 = −t
∑

i

(c†
i,↑ci+1,↑ + H.c.) + U

∑
i

ni,↑ni,↓. (C1)

As noted in the main text, the Hamiltonian H0 commutes with
the ↓ particle density on every lattice site, [H0, ni,↓] = 0, so
the ↓-spin densities on each site are conserved. For a given

configuration of ↓ spins, {n} = {ni,↓}, the effective Hamilto-
nian for the ↑ spins is

H0 = −t
∑

i

(c†
i,↑ci+1,↑ + H.c.) +

∑
i

V (ri)ni,↑, (C2)

where V (ri ) = Uni,↓. The fact that Eq. (C2) is quadratic in the
fermion operators means that its properties can be exactly cal-
culated. Using Wick’s theorem, we write the current-current
correlation function as

	{n}(x, τ ) = − t2

Ns

∑
i, j,k,l
j−i=x

ηikη jl G>
i, j (τ )G<

k,l (−τ ), (C3)

where

ηik =
⎧⎨
⎩

1 if k − i = 1
−1 if k − i = −1
0 otherwise,

(C4)

and i, j, k, l are summed over all Ns lattice sites with
the constraint that j − i = x. Here G>

i j (τ ) = 〈ci(τ )c†
j (0)〉

and G<
i j (τ ) = −〈c†

j (0)ci(τ )〉 are the single-particle Green’s
functions, whose dependence on {n} has been suppressed.
Throughout we consider the strong-coupling limit where
U 
 t .

1. Decomposition into regions of fixed n↓

The configuration of ↓ spins acts as a binary disorder po-
tential. Even infinitesimal disorder should Anderson-localize
all the single-particle wave functions. In the regime of interest,
U 
 t , the localization length is very short, and the single-
particle wave functions are confined to regions of constant
background potential, i.e., contiguous sequences of sites for
which n↓ is constant. Hence, the Green’s functions should
vanish unless i and j are in the same region, �, and k, l are
in the same region, �′. Due to the constraints from the η,
we then have two possibilities: either � = �′, or �,�′ are
neighboring regions. This leads to the decomposition

	{n}(x, τ ) = − t2

Ns

∑
�

∑
i, j,k,l∈�

j−i=x

ηikη jl G>
i, j (τ )G<

k,l (−τ )

− t2

Ns

∑
〈�,�′〉

∑
i, j∈�
k,l∈�′
j−i=x

ηikη jl

× [G>
i, j (τ )G<

k,l (−τ ) + G>
k,l (τ )G<

i, j (−τ )],
(C5)

which can be expressed as

	{n}(x, τ ) = 1

Ns

∑
�

m	(0)
m (x, τ )

+ 1

Ns

∑
〈�,�′〉

(
m + m′

2

)
	

(U )
mm′ (x, τ ), (C6)
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where m is the length of segment � and m′ is the length of
segment �′. The summands only depend on the lengths of the
segments,

	(0)
m (x, τ ) = − t2

m

m∑
i, j,k,l=1

j−i=x

ηikη jlG
>
i j (τ )G<

kl (−τ ), (C7)

	
(U )
mm′ (x, τ ) = − 2t2

m + m′ δx,0[G>
11(τ )G<

00(−τ )

+ G>
00(τ )G<

11(−τ )]. (C8)

In Eq. (C7) we have used translational invariance to take the
region � = [1, 2, . . . , m] to extend between sites 1 through
m. In Eq. (C8) we take � to be to the left of �′, with
� = [−m + 1,−m + 2, . . . , 0] and �′ = [1, 2, . . . , m′]. The
factors of m and m′ in Eq. (C6) are chosen for notational con-
venience:

∑
� m = Ns and

∑
〈�,�′〉(m + m′) = 2Ns, as long as

{n} contains at least two regions. We now wish to rewrite the
sum of � in Eq. (C6) as a sum over m. We note that at infinite
temperature, each site is independent and the probability of
any given site containing a heavy (↓) particle is equal to
n̄↓, the average density of heavy particles. Consequently, the
probability that a given site is in region containing m adjacent
↓ spins is Pm = m(1 − n̄↓)2n̄m

↓ . The factor of m accounts for
the m different possible ways the region could contain that
site. The n̄m

↓ is due to the fact that we need m sites which
each contain a ↓ spin. The (1 − n̄↓)2 comes from the fact that
the region must be bookended by empty sites. Similarly the
probability that a site is in a region of m empty sites is P̄m =
mn̄2

↓(1 − n̄↓)m. One can readily verify that
∑

m(Pm + P̄m) =
1. Finally we note that the total number of regions of length m
should be Nm = Ns(Pm + P̄m)/m and for any function fm,

∑
�

fm =
∑

m

Nm fm = Ns

∑
m

(Pm + P̄m)
fm

m
. (C9)

We can apply an analogous argument to thinking about con-
secutive regions with � of length m to the left of �′ of length
m′. If � is comprised of ↓ spins and �′ of empty sites, the
probability that an individual site is within this configura-
tion is Pmm′ = (m + m′)n̄m+1

↓ (1 − n̄↓)m′+1. The probability of
a site being in the complementary configuration (where �

is comprised of empty sites and �′ of ↓ spins) is P̄mm′ =
(m + m′)n̄m′+1

↓ (1 − n̄↓)m+1. Hence the total number of such
configurations is Nmm′ = Ns(Pmm′ + P̄mm′ )/(m + m′), and

∑
〈�,�′〉

fmm′ =
∑
mm′

Nmm′ fmm′ = Ns

∑
mm′

(Pmm′ + P̄mm′ )
fmm′

m + m′ .

(C10)
We can then rewrite Eq. (C6) as

	(x, τ ) =
∑

m

(Pm + P̄m)	(0)
m (x, τ )

︸ ︷︷ ︸
	(0)(x, τ )

+ 1

2

∑
m,m′

(Pmm′ + P̄mm′ )	(U )
mm′ (x, τ )

︸ ︷︷ ︸
	(U )(x, τ )

. (C11)

In the subsequent sections, we evaluate the terms 	(0)
m and

	
(U )
mm′ analytically in the limit U 
 t . This calculation is more

natural in momentum space, so we introduce the Fourier trans-
form 	(q, τ ) = ∑

x eiqx	(x, τ ).

2. Spectral representation

At infinite temperature, G>
i j (τ ) = (1 − n̄↑)Ai j (τ ) and

G<
i j (τ ) = −n̄↑Ai j (τ ), with spectral function Ai j (τ ) =∑
ν ψν

i (ψν
j )∗e−iεντ . Here we use ν to label the single-particle

eigenstates. In our case the ↑ particle density is n̄↑ = 1/2. Let
us now consider a region of m sites with V = 0, surrounded by
sites with V = U . We treat these as effective hard-wall bound-
ary conditions, labeling the sites in the constant-potential
region as i = 1, 2, . . . , m. The single-particle eigenstates
are given by ψn

i = A sin ki where k = πn/(m + 1); the
integer n can take values 1, 2, . . . , m. Note that we mix our
notation and use k and n interchangeably, for example,
defining the energy νn = −2t cos k, which should be
interpreted as νn = −2t cos πn/(m + 1). The normalization
factor is |A|2 = 2/(m + 1). Eigenstates in an analogous
high-potential region are identical, with energies just shifted
by U . One consequence is that 	(0) captures the dominant
low-frequency contributions to 	, while 	(U ) contains
frequency components which are of order U .

3. Low-frequency contributions: �(0)

We first compute the low-frequency contributions
	(0)

m (q, τ ) = ∑
x eiqx	(0)

m (x, τ ) from regions of size m to
the current-current correlator [see Eq. (C11)]. To begin, we
return to the definition of 	(0)

m in Eq. (C7). Evaluating the
factors of ηik ,

	(0)
m (q, τ ) = t2n̄↑(1 − n̄↑)

m

×
m−1∑
l, j=1

eiq(l− j)(A+
l, jA

−
j+1,l+1 − A+

l+1, jA
−
j+1,l

+ A+
l+1, j+1A−

j,l − A+
l, j+1A−

j,l+1), (C12)

where A+
l, j = Al, j (τ ) and A−

l, j = Al, j (−τ ). If we expand Al, j

in terms of single-particle wave functions and collect terms
with the same site index, this can be rewritten as

	(0)
m (q, τ ) = t2n̄↑(1 − n̄↑)

m

m∑
n,n̄=1

ei(νn−νn̄ )τ

× [Cn̄n(q)Cn̄n(−q) + Cnn̄(q)Cnn̄(−q)

− Cnn̄(q)Cn̄n(−q) − Cn̄n(q)Cnn̄(−q)]. (C13)

where Cn̄n(q) = ∑m
l=0 eilqψ n̄

l ψn
l+1. Evaluating 	(0)

m (q, τ ) now
amounts to evaluating Cn̄n(q). Inserting the explicit form of
the single-particle wave functions and summing over l yields

Cn̄n(q) = −A2

4
[ϒ(k + k̄ + q)eik̄ + ϒ(−k − k̄ + q)e−ik̄

− ϒ(k − k̄ + q)e−ik̄ − ϒ(−k + k̄ + q)eik̄]. (C14)
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with

ϒ(p) = 1 − ei(m+1)p

1 − eip
. (C15)

Following the notation introduced in Sec. C 2, k = πn/(m +
1) and k̄ = π n̄/(m + 1). While the expression in Eq. (C14)
can be used to numerically calculate the response function for
arbitrary q, it is cumbersome to work with analytically. We
can, however, simplify it when q = 0 or q = π . The former
results are quoted in the main text. We first take q = 0. Note
that because of the form of the momentum the phase factor in
the numerator obeys ei(m+1)p = ±1. If p = 0, corresponding
to n = n̄, then both the numerator and denominator vanish,
and by using L’Hôpital’s rule, we see that ϒ(0) = m + 1.
Otherwise ϒ(p) is nonzero only for odd p, corresponding to
n and n̄ having opposite parity. The p = 0 terms cancel with
one-another when substituted into Eq. (C13), so we only need
to consider the terms where n and n̄ have opposite parity, i.e.,
e±i(k±k̄)(m+1) = −1. After a bit of algebra, one finds

Cn̄n(0) = 1

m + 1

(
sin(k − k̄)/2

sin(k + k̄)/2
− sin(k + k̄)/2

sin(k − k̄)/2

)
,

× (n + n̄) odd. (C16)

Clearly Cn̄n(0) is odd when one switches n and n̄, so the
contribution to the uniform current-current correlator can be
written as

	(0)
m (0, τ ) = 4t2n̄↑(1 − n̄↑)

m

′∑
nn̄

ei(νn−νn̄ )τ [Cn̄n(0)]2, (C17)

where the prime indicates that we just include terms with
opposite parity. The full low-energy contribution can now be
found by inserting Eq. (C17) into Eq. (C11). To calculate the
correlator numerically, as we do in the main text, we simply
truncate the m sum to be finite. In Fig. 1, we truncate 	(0) at
m = 30. A similar argument holds for 	(0)

m (π, τ ), and we find

	(0)
m (π, τ ) = t2n̄↑(1 − n̄↑)

m

m∑
n=1

e−2iτνnν2
n . (C18)

Note that this only involves frequencies which are an even
multiple of π/(m + 1). Conversely Eq. (C17) only involves
odd multiples.

4. High-frequency contributions: �(U )

Here we compute the high-frequency contributions
	

(U )
m,m′ (q, τ ) = ∑

x eiqx	
(U )
m,m′ (x, τ ) from adjacent regions of

size m, m′ to the current-current correlator. Due to the
Kronecker delta on in Eq. (C8), 	

(U )
m,m′ (q, τ ) = 	

(U )
m,m′ (τ ) is

independent of q. This structure is seen in Fig. 6. As already
introduced, we take the left segment � to be of length m
and the right segment to be of length m′. We label the left
sites as j = −m + 1,−m + 2, . . . , 0 and the right one as i =
1, 2, . . . , m′. Since 	

(U )
mm′ = 	

(U )
m′m there is no loss of generality

in taking the right segment to be the one with heavy particles.
The energy eigenstates in the left and right regions are φn

j and
ψn′

i ,

φn
j =

√
2

m + 1
sin k(1 − j), ψn′

i =
√

2

m′ + 1
sin k′i.

(C19)
Here k = πn/(m + 1), k′ = πn′/(m′ + 1), and the eigenener-
gies are νn = −2t cos(k), μn′ = U − 2t cos(k′). The correla-
tor only depends on the values of the wave functions at the
boundary between the regions:

φn
0 =

√
2

m + 1
sin k, ψn′

1 =
√

2

m′ + 1
sin k′. (C20)

In particular,

	
(U )
m,m′ (τ ) = − 2t2

m + m′ [G
>
11(τ )G<

0,0(−τ ) + G>
00(τ )G<

1,1(−τ )]

(C21)

= 2t2n̄↑(1 − n̄↑)

m + m′

m∑
n=1

m′∑
n′=1

× (ei(μn′−νn )τ + e−i(μn′−νn )τ )|ψn′
1 |2|φn

0 |2. (C22)

The full high-frequency correlator 	(U )(τ ) can be found by
inserting this result into Eq. (C11). In Fig. 1, we truncate 	(U )

at m = m′ = 20.
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